Bessel Functions
Definition
Bessel Equation The differential equation below is called the $\nu$ order Bessel equation. $$ \begin{align*} x^2 y^{\prime \prime} +xy^{\prime} +(x^2-\nu^2)y&=0 \\ x(xy^{\prime})^{\prime}+(x^2- \nu ^2) y&=0 \\ y^{\prime \prime}+\frac{1}{x} y^{\prime} + \left( 1-\frac{\nu^{2}}{x^{2}} \right)y&=0 \end{align*} $$
Description
Functions Related
First Kind Bessel Function
First Kind Bessel Function The first solution of the Bessel equation is written as $J_{\nu}(x)$ and is called the first kind Bessel function. $$ J_{\nu}(x)=\sum \limits_{n=0}^{\infty} \frac{(-1)^{n} }{\Gamma (n+1) \Gamma (n+\nu+1)} \left(\frac{x}{2} \right)^{2n+\nu} $$
$$ J_{-\nu}(x)=\sum \limits_{n=0}^{\infty}\frac{(-1)^{n}}{\Gamma (n+1)\Gamma (n-\nu+1)} \left( \frac{x}{2} \right)^{2n-\nu} $$
Second Kind Bessel Function
Second Kind Bessel Function The second solution of the Bessel equation is referred to as $N_{\nu}(x)=Y_{\nu}(x)$ and is called the second kind Bessel function, Neumann function, or Weber function. For non-integer $\nu$ $$ N_{\nu}(x)=Y_{\nu}(x)=\frac{\cos (\nu \pi)J_{\nu}(x)-J_{-\nu}(x)}{\sin (\nu\pi)} $$ For integer $\nu$, it is defined by the limit. For $\nu\in \mathbb{Z}$ and $a \in \mathbb{R}\setminus\left\{\mathbb{Z}\right\}$ $$ N_{\nu}(x)=\lim \limits_{a \rightarrow \nu}N_{a}(x) $$
Third Kind Bessel Function
Third Kind Bessel Function The linear combination of the first kind Bessel function and the second kind Bessel function as below is called the third kind Bessel function or Hankel function. $$ H_{p}^{(1)}(x)=J_{p}(x)+iN_{p}(x) \\ H_{p}^{(2)}(x)=J_{p}(x)-iN_{p}(x) $$
Modified Bessel Functions
**Modified Bessel Equation and Modified Bessel Function The differential equation below is called the modified Bessel equation. $$ x^2 y^{\prime \prime} + xy^{\prime}-(x^2-\nu^2)y=0 $$ The solution to the modified Bessel equation is as below and is called the modified Bessel function or the hyperbolic Bessel function.
$$ \begin{align*} I_{\nu}(x)&=i^{-\nu}J_{\nu}(ix) \\ K_{\nu}(x) &= \frac{\pi}{2}i^{\nu+1}\left[ J_{\nu}(ix)+iN_{\nu}(ix) \right] \\ &= \frac{\pi}{2}i^{\nu+1}H_{p}^{(1)}(ix) \\ &=\frac{\pi}{2}\frac{I_{-\nu}(x)-I_{\nu}(x)}{\sin (\nu\pi )} \end{align*} $$
Properties
Symmetry
For integer $\nu$, the following equation holds.
$$ J_{-\nu}(x)=(-1)^{\nu}J_{\nu}(x) $$
Recursion Relationship
Recursion Relation of Bessel Functions $$ \begin{align*} & \frac{d}{dx}[x^{\nu} J_{\nu}(x)] =x^{\nu}J_{\nu-1}(x) \\ & \frac{d}{dx}[x^{-\nu}J_{\nu}(x)]=-x^{-\nu}J_{\nu+1}(x) \\ & J_{\nu-1}(x)+J_{\nu+1}(x)=\frac{2\nu}{x}J_{\nu}(x) \\ & J_{\nu-1}(x)-J_{\nu+1}(x)=2J^{\prime}_{\nu}(x) \\ & J_{\nu}^{\prime}(x)=-\frac{\nu}{x}J_{\nu}(x)+J_{\nu-1}(x)=\frac{\nu}{x}J_{\nu}(x)-J_{\nu+1}(x) \end{align*} $$
Orthogonality
The following is satisfied.
$$ \int_{0}^{1} x J_{\nu}(\alpha x) J_{\nu}(\beta x)dx = \begin{cases} 0 &\alpha\ne \beta \\ \frac{1}{2}J^{2}_{\nu+1}(\alpha)=\frac{1}{2}J_{\nu-1}^{2}(\alpha)=\frac{1}{2}J_{\nu^{\prime}}^{2}(\alpha) &\alpha=\beta \end{cases} $$