logo

Schrödinger Equation in Spherical Coordinates 📂Quantum Mechanics

Schrödinger Equation in Spherical Coordinates

Equation

In the spherical coordinate system, the Schrödinger equation is as follows.

22M[1r2r(r2ψr)+1r2sinθθ(sinθψθ)+1r2sin2θ2ψ2ϕ]+Vψ=Eψ(1) -\frac{\hbar^{2}}{2M}\left[\frac{1}{r^2}\frac{\partial}{\partial r} \left( r^2\frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left( \sin\theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 \psi}{\partial^2 \phi} \right]+V\psi=E\psi \tag{1}

Explanation

The time-independent Schrödinger equation in three dimensions is as follows.

22M2ψ+Vψ=Eψ -\frac{\hbar^{2}}{2M}\nabla^{2}\psi+V\psi=E\psi

Here, MM is the mass of the particle. If the potential depends only on the distance from the origin as in V=V(r)V = V(r), it is preferable to solve the problem in the spherical coordinate system.

Laplacian in the spherical coordinate system

2f=1r2r(r2fr)+1r2sinθθ(sinθfθ)+1r2sin2θ2fϕ2 \nabla ^{2}f = \frac{1}{r^{2}} \frac{ \partial }{ \partial r }\left(r^{2} \frac{ \partial f}{ \partial r} \right) + \frac{1}{r^{2}\sin\theta}\frac{ \partial }{ \partial \theta }\left( \sin \theta \frac{ \partial f}{ \partial \theta} \right)+\frac{1}{r^{2}\sin^{2}\theta} \frac{\partial ^{2} f}{\partial \phi^{2} }

Since the Laplacian in the spherical coordinate system is as shown above, the Schrödinger equation is as follows.

22M[1r2r(r2ψr)+1r2sinθθ(sinθψθ)+1r2sin2θ2ψ2ϕ]+Vψ=Eψ(1) -\frac{\hbar^{2}}{2M}\left[\frac{1}{r^2}\frac{\partial}{\partial r} \left( r^2\frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left( \sin\theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 \psi}{\partial^2 \phi} \right] + V\psi = E\psi \tag{1}

Assume that the wave function ψ\psi is separable as follows.

ψ(r,θ,ϕ)=R(r)Θ(θ)Φ(ϕ) \psi (r,\theta,\phi) = R(r) \Theta(\theta) \Phi( \phi)

Then the equation (1)(1) is as follows.

22M[ΘΦr2ddr(r2dRdr)+RΦr2sinθddθ(sinθdΘdθ)+RΘr2sin2θd2Φd2ϕ]+VRΘΦ=ERΘΦ -\frac{\hbar^{2}}{2M}\left[\frac{\Theta \Phi}{r^2}\frac{d}{d r} \left( r^2\frac{d R}{d r} \right) + \frac{R \Phi}{r^2\sin\theta}\frac{d}{d\theta}\left( \sin\theta \frac{d \Theta}{d \theta} \right) + \frac{R \Theta}{r^2\sin^2\theta}\frac{d^2 \Phi}{d^2 \phi} \right]+VR\Theta \Phi=ER\Theta \Phi

By transposing the right-hand side terms to the left-hand side and multiplying both sides by 2Mr221RΘΦ-\dfrac{2Mr^{2}}{\hbar ^{2}}\dfrac{1}{R\Theta \Phi}, we get the following.

[1Rddr(r2dRdr)2Mr22(V(r)E)]+[1Θsinθddθ(sinθdΘdθ)+1Φsin2θd2Φd2ϕ]=0 \left[ \frac{1}{R}\frac{d}{d r} \left( r^2\frac{d R}{d r} \right) -\frac{2Mr^{2}}{\hbar ^{2}}(V(r)-E) \right]+\left[ \frac{1}{\Theta \sin\theta}\frac{d}{d\theta}\left( \sin\theta \frac{d \Theta}{d \theta} \right) + \frac{1}{\Phi\sin^2\theta}\frac{d^2 \Phi}{d^2 \phi} \right]=0

Although additional potential terms and constants have been added, fundamentally it is the same as solving Laplace’s equation in spherical coordinates. The first term enclosed by curly braces depends only on the variable rr, and the second term depends only on variables θ\theta and ϕ\phi, so each part within the curly braces is a constant. Let the first term be (+1)\ell(\ell + 1). Then the second term is (+1)-\ell(\ell + 1).

1Rddr(r2dRdr)2Mr22(V(r)E)=(+1)1Θsinθddθ(sinθdΘdθ)+1Φsin2θd2Φd2ϕ=(+1) \begin{align*} \frac{1}{R}\frac{d}{d r} \left( r^2\frac{d R}{d r} \right) -\frac{2Mr^{2}}{\hbar ^{2}}(V(r)-E) &= \ell(\ell+1) \tag{2} \\ \frac{1}{\Theta \sin\theta}\frac{d}{d\theta}\left( \sin\theta \frac{d \Theta}{d \theta} \right) + \frac{1}{\Phi\sin^2\theta}\frac{d^2 \Phi}{d^2 \phi} &= -\ell(\ell+1) \tag{3} \end{align*}

The solution to the angular equation (3)(3) is specifically called the spherical harmonics and is as follows. Ym(θ,ϕ)=eimϕPm(cosθ) Y_{\ell}^{m}(\theta, \phi) = e^{\i m\phi}P_{\ell}^{m}(\cos \theta)

Although (3)(3) doesn’t directly show mm, during the solving process of variable separation in θ\theta and ϕ\phi, they appear as separation constants. Pm(cosθ)P_{\ell}^{m}(\cos\theta) is the associated Legendre polynomial. When normalized, it is as follows.

Ym(θ,ϕ)=2+14π(m)!(+m)!Pm(cosθ)eimϕ Y_{\ell}^{m} (\theta,\phi)=\sqrt{\frac{2\ell+1}{4\pi}\frac{(\ell-m)!}{(\ell+m)!}}P_{\ell}^{m}(\cos\theta)e^{\i m\phi}

Now the radial component equation (2)(2) remains. By multiplying both sides by RR and isolating the term related to energy EE on the right-hand side,

22Mr2ddr(r2dRdr)+(V22Ml(l+1)r2)R=ER(4) -\frac{ \hbar^{2} }{ 2Mr^{2} }\frac{d}{d r} \left( r^2\frac{d R}{d r} \right) +\left(V- \frac{\hbar ^{2}}{2M}\frac{l(l+1)}{r^{2}} \right)R =ER \tag{4}

If we then substitute rR(r)=u(r)rR(r)=u(r), the equation simplifies.

R=urdRdr=1rdudr1r2uddr(r2dRdr)=ddr(rdudru)=rd2ud2 \begin{align*} R&=\frac{u}{r} \\ \frac{ dR }{ dr }&=\frac{1}{r}\frac{ d u }{ d r}-\frac{1}{r^{2}}u \\ \frac{ d }{ d r }\left(r^{2} \frac{ d R}{ d r } \right)&=\frac{ d }{ dr }\left( r \frac{ d u }{ dr }-u \right)=r\frac{ d ^{2}u}{ d^{2} } \end{align*}

Hence, (4)(4) is as follows.

22Mr2rd2udr2+(V22M(+1)r2)ur=Eur    22Md2udr2+(V22M(+1)r2)u=Eu \begin{align*} &&-\frac{ \hbar^{2} }{ 2Mr^{2} }r\frac{ d ^{2}u}{ dr^{2} } +\left(V- \frac{\hbar ^{2}}{2M}\frac{\ell(\ell+1)}{r^{2}} \right)\frac{u}{r} &= E\frac{u}{r} \\ \implies &&-\frac{ \hbar^{2} }{ 2M }\frac{ d ^{2}u}{ dr^{2} } +\left(V- \frac{\hbar ^{2}}{2M}\frac{\ell(\ell+1)}{r^{2}} \right)u &= Eu \end{align*}

This form closely resembles the one-dimensional Schrödinger equation below.

22md2ψdx2+Vψ=Eψ -\frac{\hbar^{2}}{2m}\frac{ d ^{2} \psi}{ d x^{2} }+V\psi = E\psi

The difference is that the potential has changed to V=V22M(+1)r2V = V- \dfrac{\hbar ^{2}}{2M}\dfrac{\ell(\ell+1)}{r^{2}}. The second term proportional to 1r2\dfrac{1}{r^{2}} is called the centrifugal term. Like Ylm(cosθ)Y_{l}^{m}(\cos\theta), u(r)u(r) must also satisfy the normalization condition.

0R(r)2r2dr=0u(r)2dr \int_{0}^{\infty}|R(r)|^{2}r^{2}dr=\int _{0}^{\infty} |u(r)|^{2}dr

The general solution for V(r)V(r) stops here. Now, if the potential function V(r)V(r) is exactly given in the problem, it can be solved accordingly.