Translation in L2 Spaces: Translations, Modulations, Dilations
📂Lebesgue Spaces Translation in L2 Spaces: Translations, Modulations, Dilations Definition Translation is defined as T a : L 2 → L 2 T_{a} : L^{2} \to L^{2} T a : L 2 → L 2 for a ∈ R a \in \mathbb{R} a ∈ R as follows. ( T a f ) ( x ) : = f ( x − a )
\left( T_{a} f \right) (x) := f(x-a)
( T a f ) ( x ) := f ( x − a )
Modulation is defined as E b : L 2 → L 2 E_{b} : L^{2} \to L^{2} E b : L 2 → L 2 for b ∈ R b \in \mathbb{R} b ∈ R as follows. ( E b f ) ( x ) : = e 2 π i b x f ( x )
\left( E_{b} f \right) (x) := e^{2 \pi i b x} f(x)
( E b f ) ( x ) := e 2 πib x f ( x )
Dilation is defined as D c : L 2 → L 2 D_{c} : L^{2} \to L^{2} D c : L 2 → L 2 for c > 0 c > 0 c > 0 as follows. ( D c f ) ( x ) : = 1 c f ( x c )
\left( D_{c} f \right) (x) := {{ 1 } \over { \sqrt{c} }} f \left( {{ x } \over { c }} \right)
( D c f ) ( x ) := c 1 f ( c x )
Explanation The linear operators mentioned above are commonly used in the space of L 2 L^{2} L 2 . Although in Korean they are translated to translation, modulation, and dilation respectively, it might be easier to understand them directly in English due to the mathematical context.
The e 2 π i b x e^{2 \pi i b x} e 2 πib x multiplied in modulation is literally an abstracted rotation.
The 1 c \displaystyle {{ 1 } \over { \sqrt{c} }} c 1 multiplied in dilation can be seen as being squared to match the norm ∥ ⋅ ∥ 2 \left\| \cdot \right\|_{2} ∥ ⋅ ∥ 2 . Especially for c = 1 / 2 c = 1/2 c = 1/2 , D D D defined as follows plays a special role.
( D f ) ( x ) : = 2 f ( 2 x )
( D f ) (x) := \sqrt{2} f (2x)
( D f ) ( x ) := 2 f ( 2 x )
D D D is written as follows for convenience with respect to j ∈ Z j \in \mathbb{Z} j ∈ Z .
( D j f ) ( x ) : = 2 j f ( 2 j x )
( D^{j} f ) (x) := \sqrt{2}^{j} f \left( 2^{j} x \right)
( D j f ) ( x ) := 2 j f ( 2 j x )
Properties For all a , b ∈ R a, b \in \mathbb{R} a , b ∈ R , c > 0 c > 0 c > 0 , and f , g ∈ L 1 f,g \in L^{1} f , g ∈ L 1 ,
T a , E b , D c T_{a} , E_{b}, D_{c} T a , E b , D c is a bounded linear operator.
Inverse operator: T a , E b , D c T_{a} , E_{b}, D_{c} T a , E b , D c is unitary.
Commutation relations:
( T a E b f ) ( x ) = e − 2 π i b a ( E b T a f ) ( x ) ( T a D c f ) ( x ) = ( D c T a / c f ) ( x ) ( D c E b f ) ( x ) = ( E b / c D c f ) ( x )
(T_{a} E_{b} f ) (x) = e^{- 2 \pi i b a} (E_{b} T_{a} f ) (x)
\\ (T_{a} D_{c} f ) (x) = (D_{c} T_{a/c} f ) (x)
\\ (D_{c} E_{b} f ) (x) = (E_{b/c} D_{c} f ) (x)
( T a E b f ) ( x ) = e − 2 πiba ( E b T a f ) ( x ) ( T a D c f ) ( x ) = ( D c T a / c f ) ( x ) ( D c E b f ) ( x ) = ( E b / c D c f ) ( x )
Relation with Fourier transform:
F T a = E − a F F E b = T b F F D c = D 1 / c F
\mathcal{F} T_{a} = E_{-a} \mathcal{F}
\\ \mathcal{F} E_{b} = T_{b} \mathcal{F}
\\ \mathcal{F} D_{c} = D_{1/c} \mathcal{F}
F T a = E − a F F E b = T b F F D c = D 1/ c F
Regarding D D D , the following can be obtained about j , k ∈ Z j, k \in \mathbb{Z} j , k ∈ Z as corollaries of the above theorems.
T k D j = D j T 2 j k D j T k = T 2 − j k D j ( D j ) ∗ = D − j
T_{k} D^{j} = D^{j} T_{2^{j} k }
\\ D^{j} T_{k} = T_{2^{-j}k} D^{j}
\\ \left( D^{j} \right)^{ \ast } = D^{-j}
T k D j = D j T 2 j k D j T k = T 2 − j k D j ( D j ) ∗ = D − j
Proof 1. Part 1. Linear
For all f , g ∈ L 2 f,g \in L^{2} f , g ∈ L 2 and α , β ∈ C \alpha , \beta \in \mathbb{C} α , β ∈ C ,
T a ( α f + β g ) ( x ) = ( α f + β g ) ( x − a ) = α f ( x − a ) + β g ( x − a ) = α T a f ( x ) + β T a g ( x )
\begin{align*}
T_{a} \left( \alpha f + \beta g \right)(x) =& \left( \alpha f + \beta g \right)(x-a)
\\ =& \alpha f (x-a) + \beta g (x-a)
\\ =& \alpha T_{a} f (x) + \beta T_{a} g (x)
\end{align*}
T a ( α f + β g ) ( x ) = = = ( α f + β g ) ( x − a ) α f ( x − a ) + β g ( x − a ) α T a f ( x ) + β T a g ( x )
Therefore, T a T_{a} T a is linear.
E b ( α f + β g ) ( x ) = e 2 π i b x ( α f + β g ) ( x ) = α e 2 π i b x f ( x ) + β e 2 π i b x g ( x ) = α E b f ( x ) + β E b g ( x )
\begin{align*}
E_{b} \left( \alpha f + \beta g \right)(x) =& e^{ 2 \pi i b x } \left( \alpha f + \beta g \right)(x)
\\ =& \alpha e^{ 2 \pi i b x } f (x) + \beta e^{ 2 \pi i b x } g (x)
\\ =& \alpha E_{b} f (x) + \beta E_{b} g (x)
\end{align*}
E b ( α f + β g ) ( x ) = = = e 2 πib x ( α f + β g ) ( x ) α e 2 πib x f ( x ) + β e 2 πib x g ( x ) α E b f ( x ) + β E b g ( x )
Therefore, E b E_{b} E b is linear.
D c ( α f + β g ) ( x ) = 1 c ( α f + β g ) ( x c ) = α 1 c f ( x ) + β 1 c g ( x ) = α D c f ( x ) + β D c g ( x )
\begin{align*}
D_{c} \left( \alpha f + \beta g \right)(x) =& {{ 1 } \over { \sqrt{c} }} \left( \alpha f + \beta g \right) \left( {{ x } \over { c }} \right)
\\ =& \alpha {{ 1 } \over { \sqrt{c} }} f (x) + \beta {{ 1 } \over { \sqrt{c} }} g (x)
\\ =& \alpha D_{c} f (x) + \beta D_{c} g (x)
\end{align*}
D c ( α f + β g ) ( x ) = = = c 1 ( α f + β g ) ( c x ) α c 1 f ( x ) + β c 1 g ( x ) α D c f ( x ) + β D c g ( x )
Therefore, D c D_{c} D c is linear.
Part 2. Bounded
Substitute as t : = x − a t := x - a t := x − a ,
∥ T a f ∥ 2 = ∫ − ∞ ∞ ∣ T a f ( x ) ∣ 2 d x = ∫ − ∞ ∞ ∣ f ( x − a ) ∣ 2 d x = ∫ − ∞ ∞ ∣ f ( t ) ∣ 2 d t = ∥ f ∥ 2
\begin{align*}
\left\| T_{a} f \right\|_{2} =& \int_{-\infty}^{\infty} \left| T_{a} f \left( x \right) \right|^{2} dx
\\ =& \int_{-\infty}^{\infty} \left| f \left( x - a \right) \right|^{2} dx
\\ =& \int_{-\infty}^{\infty} \left| f \left( t \right) \right|^{2} dt
\\ =& \left\| f \right\|_{2}
\end{align*}
∥ T a f ∥ 2 = = = = ∫ − ∞ ∞ ∣ T a f ( x ) ∣ 2 d x ∫ − ∞ ∞ ∣ f ( x − a ) ∣ 2 d x ∫ − ∞ ∞ ∣ f ( t ) ∣ 2 d t ∥ f ∥ 2
Therefore, T a T_{a} T a is bounded. Since ∣ e 2 π i b x ∣ = 1 \left| e^{2 \pi i b x } \right| =1 e 2 πib x = 1 ,
∥ E b f ∥ 2 = ∫ − ∞ ∞ ∣ E b f ( x ) ∣ 2 d x = ∫ − ∞ ∞ ∣ e 2 π i b x f ( x ) ∣ 2 d x = ∫ − ∞ ∞ 1 ⋅ ∣ f ( t ) ∣ 2 d t = ∥ f ∥ 2
\begin{align*}
\left\| E_{b} f \right\|_{2} =& \int_{-\infty}^{\infty} \left| E_{b} f \left( x \right) \right|^{2} dx
\\ =& \int_{-\infty}^{\infty} \left| e^{2 \pi i b x } f \left( x \right) \right|^{2} dx
\\ =& \int_{-\infty}^{\infty} 1 \cdot \left| f \left( t \right) \right|^{2} dt
\\ =& \left\| f \right\|_{2}
\end{align*}
∥ E b f ∥ 2 = = = = ∫ − ∞ ∞ ∣ E b f ( x ) ∣ 2 d x ∫ − ∞ ∞ e 2 πib x f ( x ) 2 d x ∫ − ∞ ∞ 1 ⋅ ∣ f ( t ) ∣ 2 d t ∥ f ∥ 2
Therefore, E b E_{b} E b is bounded. Substitute as t : = x / c t := x/c t := x / c ,
∥ D c f ∥ 2 = ∫ − ∞ ∞ ∣ D c f ( x ) ∣ 2 d x = ∫ − ∞ ∞ ∣ 1 c f ( x c ) ∣ 2 d x = ∫ − ∞ ∞ 1 c ∣ f ( t ) ∣ 2 c d t = ∫ − ∞ ∞ ∣ f ( t ) ∣ 2 d t = ∥ f ∥ 2
\begin{align*}
\left\| D_{c} f \right\|_{2} =& \int_{-\infty}^{\infty} \left| D_{c} f \left( x \right) \right|^{2} dx
\\ =& \int_{-\infty}^{\infty} \left| {{ 1 } \over { \sqrt{c} }} f \left( {{ x } \over { c }} \right) \right|^{2} dx
\\ =& \int_{-\infty}^{\infty} {{ 1 } \over { c }} \left| f \left( t \right) \right|^{2} c dt
\\ =& \int_{-\infty}^{\infty} \left| f \left( t \right) \right|^{2} dt
\\ =& \left\| f \right\|_{2}
\end{align*}
∥ D c f ∥ 2 = = = = = ∫ − ∞ ∞ ∣ D c f ( x ) ∣ 2 d x ∫ − ∞ ∞ c 1 f ( c x ) 2 d x ∫ − ∞ ∞ c 1 ∣ f ( t ) ∣ 2 c d t ∫ − ∞ ∞ ∣ f ( t ) ∣ 2 d t ∥ f ∥ 2
Therefore, D c D_{c} D c is bounded.
■