logo

Associated Legendre Polynomials for Negative Index m 📂Functions

Associated Legendre Polynomials for Negative Index m

Formulas

The Associated Legendre Polynomials obey the proportionality relation below, depending on the sign of mm.

Plm(x)=(1)m(lm)!(l+m)!Plm(x) P_{l}^{-m}(x)=(-1)^{m}\frac{(l-m)!}{(l+m)!}P_{l}^{m}(x)

(1x2)d2ydx22xdydx+(m21x2+l(l+1))y=0 (1-x^{2})\frac{ d^{2}y }{ dx^{2} }-2x \frac{dy}{dx}+\left( \frac{-m^{2}}{1-x^{2}}+l(l+1) \right)y=0

Explanation

Looking at the associated Legendre differential equation, the section regarding mm is shown as m2m^2, so whether mm is positive or negative doesn’t affect the solution. Thus, the associated Legendre polynomials can be derived as follows.

Plm(x)=(1x2)m2dmdxmPl(x)=(1x2)m2dmdxm[12ll!dldxl(x21)l] \begin{align*} P_{l}^{m}(x)&= (1-x ^{2})^{\frac{|m|}{2}} \frac{ d^{|m|} }{ dx^{|m|} } P_{l}(x) \\ &=(1-x ^{2})^{\frac{|m|}{2}} \frac{ d^{|m|} }{ dx^{|m|} }\left[ \dfrac{1}{2^l l!} \dfrac{d^l}{dx^l}(x^2-1)^l\right] \end{align*}

Therefore, according to the formula above, Plm(x)=Plm(x)P_{l}^{m}(x)=P_{l}^{-m}(x). However, rather than seeing them as equal, they are considered to be proportional. Since merely multiplying the solution of a differential equation by a constant still results in a solution, assuming AA to be an arbitrary constant, then Plm(x)P_{l}^{-m}(x) is expressed like APlm(x)AP_{l}^{m}(x). This article will demonstrate that A=(1)m(lm)!(l+m)!A=(-1)^{m}\frac{(l-m)!}{(l+m)!} holds.

Derivation

First, applying the Leibniz rule to the differentiation part of the associated Legendre polynomials gives

dl+mdxl+m(x21)l=dl+mdxl+m[(x1)l(x+1)l]=k=0l+m(l+m)!(l+mk)!k!dl+mkdxl+mk(x+1)ldkdxk(x1)l \begin{align*} \frac{ d ^{l+|m|}}{ dx^{l+|m|} }(x^{2}-1)^{l} &= \frac{ d ^{l+|m|}}{ dx^{l+|m|} }[(x-1)^{l}(x+1)^{l}] \\ &=\sum \limits _{k=0}^{l+|m|} \frac{(l+|m|)!}{(l+|m|-k)!k!}\frac{ d ^{l+|m|-k}}{ dx^{l+|m|-k} }(x+1)^{l}\frac{ d ^{k} }{ dx^{k} }(x-1)^{l} \tag{1} \end{align*}

Case 1. m>0m>0

Consider the case of m>0m>0. Then, l+mk=l+mk=l+(mk)l+|m|-k=l+m-k=l+(m-k). The index kk ranges from 00 to l+ml+m. In the case when k<mk < m, since l+(mk)>ll+(m-k)>l, the number of differentiations exceeds the highest order term’s degree

dl+mkdxl+mk(x+1)l=0 \frac{ d ^{l+|m|-k}}{ dx^{l+|m|-k} }(x+1)^{l}=0

Therefore, the RHS of (1)(1) for 0k<m0\le k <m is entirely 00. Similarly, if k>lk>l, then dkdxk(x1)l=0\frac{ d ^{k}}{ dx^{k} }(x-1)^{l}=0, so only in the case of klk\le l does a term other than 00 exist on the RHS. That is, for kk that is not mklm\le k \le l, the RHS is 00, hence k=0l+m=k=ml\sum\limits_{k=0}^{l+m}=\sum\limits_{k=m}^{l} holds. Therefore,

dldxl+m(x21)l=k=ml(l+m)!(l+mk)!k!dl+mkdxl+mk(x+1)ldkdxk(x1)l=k=ml(l+m)!(l+mk)!k!l(l1)(llm+k+1)(x+1)llm+kl(l1)(lk+1)(x1)lk=k=ml(l+m)!(l+mk)!k!l!(km)!(x+1)kml!(lk)!(x1)lk=(l!)2k=ml(l+m)!(l+mk)!k!1(km)!1(lk)!(x+1)km(x1)lk \begin{align*} \frac{ d ^{l}}{ dx^{l+m} }(x^{2}-1)^{l} &= \sum \limits_{k=m}^{l}\frac{(l+m)!}{(l+m-k)!k!}\frac{ d ^{l+m-k}}{ dx^{l+m-k}}(x+1)^{l}\frac{ d ^{k}}{ dx^{k} }(x-1)^{l} \\ &= \sum \limits_{k=m}^{l}\frac{(l+m)!}{(l+m-k)!k!}l(l-1)\cdots(l-l-m+k+1)(x+1)^{l-l-m+k} \\ &\qquad l(l-1)\cdots(l-k+1)(x-1)^{l-k} \\ &= \sum \limits_{k=m}^{l}\frac{(l+m)!}{(l+m-k)!k!}\frac{l!}{(k-m)!}(x+1)^{k-m}\frac{l!}{(l-k)!}(x-1)^{l-k} \\ &=(l!)^{2}\sum \limits_{k=m}^{l}\frac{(l+m)!}{(l+m-k)!k!}\frac{1}{(k-m)!}\frac{1}{(l-k)!}(x+1)^{k-m}(x-1)^{l-k} \tag{2} \end{align*}

Case 2. m<0m<0

In this scenario, equation (1)(1) becomes

dl+mdxl+m(x21)l=dlmdxlm(x21)l=k=0lm(lm)!(lmk)!k!dlmkdxlmk(x+1)ldkdxk(x1)l=k=0lm(lm)!(lmk)!k!l!(k+m)!(x+1)k+ml!(lk)!(x1)lk=(l!)2k=0lm(lm)!(lmk)!k!1(k+m)!1(lk)!(x+1)k+m(x1)lk \begin{align*} \frac{ d ^{l+|m|}}{ dx^{l+|m|} }(x^{2}-1)^{l}&=\frac{ d ^{l-m}}{ dx^{l-m} }(x^{2}-1)^{l} \\ &= \sum \limits _{k=0}^{l-m} \frac{(l-m)!}{(l-m-k)!k!}\frac{ d ^{l-m-k}}{ dx^{l-m-k} }(x+1)^{l}\frac{ d ^{k} }{ dx^{k} }(x-1)^{l} \\ &= \sum \limits _{k=0}^{l-m} \frac{(l-m)!}{(l-m-k)!k!}\frac{l!}{(k+m)!}(x+1)^{k+m}\frac{ l! }{ (l-k)! }(x-1)^{l-k} \\ &= (l!)^{2}\sum \limits _{k=0}^{l-m} \frac{(l-m)!}{(l-m-k)!k!}\frac{1}{(k+m)!}\frac{1 }{ (l-k)! }(x+1)^{k+m}(x-1)^{l-k} \end{align*}

Changing the index to k=kmk=k-m gives

dlmdxlm(x21)l=(l!)2k=ml(lm)!(lk)!(km)!1k!1(l+mk)!(x+1)k(x1)l+mk(3) \frac{ d ^{l-m}}{ dx^{l-m} }(x^{2}-1)^{l}= (l!)^{2}\sum \limits _{k=m}^{l} \frac{(l-m)!}{(l-k)!(k-m)!}\frac{1}{k!}\frac{1 }{ (l+m-k)! }(x+1)^{k}(x-1)^{l+m-k} \tag{3}

Combining (2)(2), (3)(3) results in

dlmdxlm(x21)l=(lm)!(l+m)!(x+1)m(x1)mdl+mdxl+m(x21)l(4) \frac{d^{l-m}}{dx^{l-m}}(x^{2}-1)^{l}=\frac{(l-m)!}{(l+m)!}(x+1)^{m}(x-1)^{m}\frac{ d ^{l+m}}{ dx^{l+m} }(x^{2}-1)^{l}\tag{4}

Also, when m>0m>0,

Plm(x)=(1x2)m212ll!dl+mdxl+m(x21)l P_{l}^{m}(x)=(1-x ^{2})^{\frac{m}{2}} \dfrac{1}{2^l l!} \dfrac{d^{l+m}}{dx^{l+m}}(x^2-1)^l

but we are currently considering the case of mmm\rightarrow-m, so by substituting m-m for mm,

Plm(x)=(1x2)m212ll!dlmdxlm(x21)l P_{l}^{-m}(x)=(1-x ^{2})^{-\frac{m}{2}} \dfrac{1}{2^l l!} \dfrac{d^{l-m}}{dx^{l-m}}(x^2-1)^l

Substituting (4)(4) then yields

Plm(x)=(1x2)m212ll!(lm)!(l+m)!(x+1)m(x1)mdl+mdxl+m(x21)l=(1x2)m(lm)!(l+m)!(x21)m[(1x2)m212ll!dl+mdxl+m(x21)l]=(1x2)m(lm)!(l+m)!(x21)mPlm(x)=(1)m(x21)m(lm)!(l+m)!(x21)mPlm(x)=(1)m(lm)!(l+m)!Plm(x) \begin{align*} P_{l}^{-m}(x) &= (1-x ^{2})^{-\frac{m}{2}} \dfrac{1}{2^l l!} \frac{(l-m)!}{(l+m)!}(x+1)^{m}(x-1)^{m}\frac{ d ^{l+m}}{ dx^{l+m} }(x^{2}-1)^{l} \\ &= (1-x ^{2})^{-m } \frac{(l-m)!}{(l+m)!}(x^{2}-1)^{m}\left[(1-x ^{2})^{\frac{m}{2}}\dfrac{1}{2^l l!}\frac{ d ^{l+m}}{ dx^{l+m} }(x^{2}-1)^{l} \right] \\ &= (1-x ^{2})^{-m } \frac{(l-m)!}{(l+m)!}(x^{2}-1)^{m}P_{l}^{m}(x) \\ &= (-1)^{m}(x ^{2}-1)^{-m } \frac{(l-m)!}{(l+m)!}(x^{2}-1)^{m}P_{l}^{m}(x) \\ &= (-1)^{m} \frac{(l-m)!}{(l+m)!}P_{l}^{m}(x) \end{align*}