logo

Generating Functions of Legendre Polynomials 📂Functions

Generating Functions of Legendre Polynomials

Theorem

The generating function of Legendre polynomials is as follows.

Φ(x,t)=112xt+t2=l=0Pl(x)tl,t<1 \Phi (x,t) = \frac{1}{\sqrt{1-2xt+t^{2}}} = \sum \limits_{l=0}^{\infty}P_{l}(x)t^{l},\quad |t|<1

Description

The generating function of Legendre polynomials is, put simply, a polynomial that has the Legendre polynomial Pl(x)P_{l}(x) as its coefficients.

Lemma

The function Φ(x,t)=112xt+t2\Phi (x,t) = \dfrac{1}{\sqrt{1-2xt+t^{2}}} is a solution to the differential equation below.

(1x2)2Φx22xΦx+t2t2(tΦ)=0 \begin{equation} (1-x^{2})\frac{ \partial ^{2} \Phi}{ \partial x^{2} }-2x\frac{ \partial \Phi}{ \partial x }+t\frac{ \partial ^{2}}{ \partial t^{2} }(t\Phi) = 0 \end{equation}

Proof

Since it can be easily shown by simply differentiating and adding, detailed computation and explanation are omitted.

Φx=t(12xt+t2)32 \frac{ \partial \Phi}{ \partial x }=t(1-2xt+t^{2})^{-\frac{3 }{2}}

2Φx2=3t2(12xt+t2)52 \frac{ \partial ^{2}\Phi}{ \partial x^{2} }=3t^{2}(1-2xt+t^{2})^{-\frac{5 }{2}}

t(tΦ)=(12xt+t2)12(t2xt)(12xt+t2)32 \frac{ \partial }{ \partial t }(t\Phi)=(1-2xt+t^{2})^{-\frac{1}{2}}-(t^{2}-xt)(1-2xt+t^{2})^{-\frac{3 }{2}}

2t2(tΦ)=(3t2x)(12xt+t2)32+3(t32xt2+x2t)(12xt+t2)52 \frac{ \partial ^{2}}{ \partial t^{2} }(t\Phi)=-(3t-2x)(1-2xt+t^{2})^{-\frac{3}{2}}+3(t^{3}-2xt^{2}+x^{2}t)(1-2xt+t^{2})^{-\frac{5}{2}}

Therefore,

(1x2)2Φx22xΦx+t2t2(tΦ)=3(t2x2t2)(12xt+t2)522xt(12xt+t2)32(3t22xt2)(12xt+t2)32+3(t42xt3+x2t2)(12xt+t2)52=3t2(12xt+t2)32+3t2(12xt+t2)(12xt+t2)52=3t2(12xt+t2)32+3t2(12xt+t2)32=0 \begin{align*} &(1-x^{2})\frac{ \partial ^{2} \Phi}{ \partial x^{2} }-2x\frac{ \partial \Phi}{ \partial x }+t\frac{ \partial ^{2}}{ \partial t^{2} }(t\Phi) \\ &= 3(t^{2}-x^{2}t^{2})(1-2xt+t^{2})^{-\frac{5 }{2}}-2xt(1-2xt+t^{2})^{-\frac{3 }{2}} \\ & -(3t^{2}-2xt^{2})(1-2xt+t^{2})^{-\frac{3}{2}}+3(t^{4}-2xt^{3}+x^{2}t^{2})(1-2xt+t^{2})^{-\frac{5}{2}} \\ &= -3t^{2}(1-2xt+t^{2})^{-\frac{3}{2}}+3t^{2}(1-2xt+t^{2})(1-2xt+t^{2})^{-\frac{5}{2}} \\ &= -3t^{2}(1-2xt+t^{2})^{-\frac{3}{2}}+3t^{2}(1-2xt+t^{2})^{-\frac{3}{2}} \\ &= 0 \end{align*}

Proof

To show that Φ(x,t)=112xt+t2\Phi(x, t) = \dfrac{1}{\sqrt{1-2xt+t^{2}}} is the generating function of Legendre polynomials, according to the definition of generating functions, it suffices to express Φ(x,t)\Phi(x, t) as a polynomial in tt, and verify that the coefficients are Legendre polynomials. First, substituting with y2xtt2y \equiv 2xt - t^{2},

Φ(y)=11y=(1y)12. \begin{align*} \Phi(y) &= \dfrac{1}{\sqrt{1 - y}} \\ &= (1-y)^{-\frac{1}{2}}. \end{align*}

Negative binomial series

(1x)α=1+αx+α(α+1)2!x2+α(α+1)(α+2)3!x3+ (1 - x)^{-\alpha} = 1 + \alpha x + \dfrac{\alpha(\alpha+1)}{2!} x^{2} + \dfrac{\alpha(\alpha+1)(\alpha+2)}{3!} x^{3} + \cdots

Then, by the formula for the negative binomial series, it is as follows.

Φ(y)=(1y)12=1+12y+12322!y2+=1+12(2xtt2)+38(2xtt2)2+=1+xt12t2+38(4x2t24xt3+t4)+=1+xt+(32x212)t2+=f0(x)+f1(x)t+f2(x)t2+=l=0fl(x)tl \begin{align*} \Phi(y) &= (1-y)^{-\frac{1}{2}} \\ &= 1 + \frac{1}{2}y + \frac{\frac{1}{2}\cdot \frac{3}{2}}{2!}y^{2} + \cdots \\ &= 1 + \frac{1}{2}(2xt-t^{2}) + \frac{3}{8}(2xt-t^{2})^{2} + \cdots \\ &= 1 + xt -\frac{1}{2}t^{2} + \frac{3}{8}(4x^{2}t^{2} - 4xt^{3} + t^{4}) + \cdots \\ &= 1 + xt + \left(\frac{3}{2}x^{2} - \frac{1}{2}\right)t^{2} + \cdots \\ &= f_{0}(x) + f_{1}(x)t + f_{2}(x)t^{2} + \cdots \\ &= \sum\limits_{l=0}^{\infty} f_{l}(x) t^{l} \end{align*}

Now, by substituting the above series into the differential equation (1)(1), we obtain the following.

 0=(1x2)2(l=0fl(x)tl)x22x(l=0fl(x)tl)x+t2t2(tl=0fl(x)tl)=(1x2)l=0fl(x)tl2xl=0fl(x)tl+l=0l(l+1)fl(x)tl=l=0[(1x2)fl(x)2xfl(x)+l(l+1)fl(x)]tl \begin{align*} &\quad \ 0 \\ &= (1-x^{2})\frac{ \partial ^{2} \left( \sum\limits_{l=0}^{\infty} f_{l}(x) t^{l}\right)}{ \partial x^{2} }-2x\frac{ \partial \left( \sum\limits_{l=0}^{\infty} f_{l}(x) t^{l}\right)}{ \partial x } + t\frac{ \partial ^{2}}{ \partial t^{2} }\left( t \sum\limits_{l=0}^{\infty} f_{l}(x) t^{l}\right) \\ &= (1-x^{2}) \sum\limits_{l=0}^{\infty} f^{\prime \prime}_{l}(x) t^{l} - 2x \sum\limits_{l=0}^{\infty} f^{\prime}_{l}(x) t^{l} + \sum\limits_{l=0}^{\infty}l(l+1) f_{l}(x) t^{l} \\ &= \sum\limits_{l=0}^{\infty} \left[ (1 - x^{2}) f_{l}^{\prime \prime}(x) - 2x f_{l}^{\prime}(x) + l(l+1)f_{l}(x) \right] t^{l} \end{align*}

Since this equation is an identity in tt, the coefficients of each tlt^{l} must all be equal to 00. Thus, we have the following.

(1x2)fl(x)2xfl(x)+l(l+1)fl(x)=0 (1 - x^{2}) f_{l}^{\prime \prime}(x) - 2x f_{l}^{\prime}(x) + l(l+1)f_{l}(x) = 0

This is the Legendre differential equation, and its solution is the Legendre polynomials. Therefore, since fl(x)=Pl(x)f_{l}(x) = P_{l}(x), Φ\Phi is the generating function of Legendre polynomials.