Generating Functions of Legendre Polynomials
📂Functions Generating Functions of Legendre Polynomials Theorem The generating function of Legendre polynomials is as follows.
Φ ( x , t ) = 1 1 − 2 x t + t 2 = ∑ l = 0 ∞ P l ( x ) t l , ∣ t ∣ < 1
\Phi (x,t) = \frac{1}{\sqrt{1-2xt+t^{2}}} = \sum \limits_{l=0}^{\infty}P_{l}(x)t^{l},\quad |t|<1
Φ ( x , t ) = 1 − 2 x t + t 2 1 = l = 0 ∑ ∞ P l ( x ) t l , ∣ t ∣ < 1
Description The generating function of Legendre polynomials is, put simply, a polynomial that has the Legendre polynomial P l ( x ) P_{l}(x) P l ( x ) as its coefficients.
Lemma The function Φ ( x , t ) = 1 1 − 2 x t + t 2 \Phi (x,t) = \dfrac{1}{\sqrt{1-2xt+t^{2}}} Φ ( x , t ) = 1 − 2 x t + t 2 1 is a solution to the differential equation below.
( 1 − x 2 ) ∂ 2 Φ ∂ x 2 − 2 x ∂ Φ ∂ x + t ∂ 2 ∂ t 2 ( t Φ ) = 0
\begin{equation}
(1-x^{2})\frac{ \partial ^{2} \Phi}{ \partial x^{2} }-2x\frac{ \partial \Phi}{ \partial x }+t\frac{ \partial ^{2}}{ \partial t^{2} }(t\Phi) = 0
\end{equation}
( 1 − x 2 ) ∂ x 2 ∂ 2 Φ − 2 x ∂ x ∂ Φ + t ∂ t 2 ∂ 2 ( t Φ ) = 0
Proof Since it can be easily shown by simply differentiating and adding, detailed computation and explanation are omitted.
∂ Φ ∂ x = t ( 1 − 2 x t + t 2 ) − 3 2
\frac{ \partial \Phi}{ \partial x }=t(1-2xt+t^{2})^{-\frac{3 }{2}}
∂ x ∂ Φ = t ( 1 − 2 x t + t 2 ) − 2 3
∂ 2 Φ ∂ x 2 = 3 t 2 ( 1 − 2 x t + t 2 ) − 5 2
\frac{ \partial ^{2}\Phi}{ \partial x^{2} }=3t^{2}(1-2xt+t^{2})^{-\frac{5 }{2}}
∂ x 2 ∂ 2 Φ = 3 t 2 ( 1 − 2 x t + t 2 ) − 2 5
∂ ∂ t ( t Φ ) = ( 1 − 2 x t + t 2 ) − 1 2 − ( t 2 − x t ) ( 1 − 2 x t + t 2 ) − 3 2
\frac{ \partial }{ \partial t }(t\Phi)=(1-2xt+t^{2})^{-\frac{1}{2}}-(t^{2}-xt)(1-2xt+t^{2})^{-\frac{3 }{2}}
∂ t ∂ ( t Φ ) = ( 1 − 2 x t + t 2 ) − 2 1 − ( t 2 − x t ) ( 1 − 2 x t + t 2 ) − 2 3
∂ 2 ∂ t 2 ( t Φ ) = − ( 3 t − 2 x ) ( 1 − 2 x t + t 2 ) − 3 2 + 3 ( t 3 − 2 x t 2 + x 2 t ) ( 1 − 2 x t + t 2 ) − 5 2
\frac{ \partial ^{2}}{ \partial t^{2} }(t\Phi)=-(3t-2x)(1-2xt+t^{2})^{-\frac{3}{2}}+3(t^{3}-2xt^{2}+x^{2}t)(1-2xt+t^{2})^{-\frac{5}{2}}
∂ t 2 ∂ 2 ( t Φ ) = − ( 3 t − 2 x ) ( 1 − 2 x t + t 2 ) − 2 3 + 3 ( t 3 − 2 x t 2 + x 2 t ) ( 1 − 2 x t + t 2 ) − 2 5
Therefore,
( 1 − x 2 ) ∂ 2 Φ ∂ x 2 − 2 x ∂ Φ ∂ x + t ∂ 2 ∂ t 2 ( t Φ ) = 3 ( t 2 − x 2 t 2 ) ( 1 − 2 x t + t 2 ) − 5 2 − 2 x t ( 1 − 2 x t + t 2 ) − 3 2 − ( 3 t 2 − 2 x t 2 ) ( 1 − 2 x t + t 2 ) − 3 2 + 3 ( t 4 − 2 x t 3 + x 2 t 2 ) ( 1 − 2 x t + t 2 ) − 5 2 = − 3 t 2 ( 1 − 2 x t + t 2 ) − 3 2 + 3 t 2 ( 1 − 2 x t + t 2 ) ( 1 − 2 x t + t 2 ) − 5 2 = − 3 t 2 ( 1 − 2 x t + t 2 ) − 3 2 + 3 t 2 ( 1 − 2 x t + t 2 ) − 3 2 = 0
\begin{align*}
&(1-x^{2})\frac{ \partial ^{2} \Phi}{ \partial x^{2} }-2x\frac{ \partial \Phi}{ \partial x }+t\frac{ \partial ^{2}}{ \partial t^{2} }(t\Phi) \\
&= 3(t^{2}-x^{2}t^{2})(1-2xt+t^{2})^{-\frac{5 }{2}}-2xt(1-2xt+t^{2})^{-\frac{3 }{2}} \\
& -(3t^{2}-2xt^{2})(1-2xt+t^{2})^{-\frac{3}{2}}+3(t^{4}-2xt^{3}+x^{2}t^{2})(1-2xt+t^{2})^{-\frac{5}{2}} \\
&= -3t^{2}(1-2xt+t^{2})^{-\frac{3}{2}}+3t^{2}(1-2xt+t^{2})(1-2xt+t^{2})^{-\frac{5}{2}} \\
&= -3t^{2}(1-2xt+t^{2})^{-\frac{3}{2}}+3t^{2}(1-2xt+t^{2})^{-\frac{3}{2}} \\
&= 0
\end{align*}
( 1 − x 2 ) ∂ x 2 ∂ 2 Φ − 2 x ∂ x ∂ Φ + t ∂ t 2 ∂ 2 ( t Φ ) = 3 ( t 2 − x 2 t 2 ) ( 1 − 2 x t + t 2 ) − 2 5 − 2 x t ( 1 − 2 x t + t 2 ) − 2 3 − ( 3 t 2 − 2 x t 2 ) ( 1 − 2 x t + t 2 ) − 2 3 + 3 ( t 4 − 2 x t 3 + x 2 t 2 ) ( 1 − 2 x t + t 2 ) − 2 5 = − 3 t 2 ( 1 − 2 x t + t 2 ) − 2 3 + 3 t 2 ( 1 − 2 x t + t 2 ) ( 1 − 2 x t + t 2 ) − 2 5 = − 3 t 2 ( 1 − 2 x t + t 2 ) − 2 3 + 3 t 2 ( 1 − 2 x t + t 2 ) − 2 3 = 0
■
Proof To show that Φ ( x , t ) = 1 1 − 2 x t + t 2 \Phi(x, t) = \dfrac{1}{\sqrt{1-2xt+t^{2}}} Φ ( x , t ) = 1 − 2 x t + t 2 1 is the generating function of Legendre polynomials, according to the definition of generating functions, it suffices to express Φ ( x , t ) \Phi(x, t) Φ ( x , t ) as a polynomial in t t t , and verify that the coefficients are Legendre polynomials. First, substituting with y ≡ 2 x t − t 2 y \equiv 2xt - t^{2} y ≡ 2 x t − t 2 ,
Φ ( y ) = 1 1 − y = ( 1 − y ) − 1 2 .
\begin{align*}
\Phi(y) &= \dfrac{1}{\sqrt{1 - y}} \\
&= (1-y)^{-\frac{1}{2}}.
\end{align*}
Φ ( y ) = 1 − y 1 = ( 1 − y ) − 2 1 .
Negative binomial series
( 1 − x ) − α = 1 + α x + α ( α + 1 ) 2 ! x 2 + α ( α + 1 ) ( α + 2 ) 3 ! x 3 + ⋯
(1 - x)^{-\alpha} = 1 + \alpha x + \dfrac{\alpha(\alpha+1)}{2!} x^{2} + \dfrac{\alpha(\alpha+1)(\alpha+2)}{3!} x^{3} + \cdots
( 1 − x ) − α = 1 + αx + 2 ! α ( α + 1 ) x 2 + 3 ! α ( α + 1 ) ( α + 2 ) x 3 + ⋯
Then, by the formula for the negative binomial series, it is as follows.
Φ ( y ) = ( 1 − y ) − 1 2 = 1 + 1 2 y + 1 2 ⋅ 3 2 2 ! y 2 + ⋯ = 1 + 1 2 ( 2 x t − t 2 ) + 3 8 ( 2 x t − t 2 ) 2 + ⋯ = 1 + x t − 1 2 t 2 + 3 8 ( 4 x 2 t 2 − 4 x t 3 + t 4 ) + ⋯ = 1 + x t + ( 3 2 x 2 − 1 2 ) t 2 + ⋯ = f 0 ( x ) + f 1 ( x ) t + f 2 ( x ) t 2 + ⋯ = ∑ l = 0 ∞ f l ( x ) t l
\begin{align*}
\Phi(y) &= (1-y)^{-\frac{1}{2}} \\
&= 1 + \frac{1}{2}y + \frac{\frac{1}{2}\cdot \frac{3}{2}}{2!}y^{2} + \cdots \\
&= 1 + \frac{1}{2}(2xt-t^{2}) + \frac{3}{8}(2xt-t^{2})^{2} + \cdots \\
&= 1 + xt -\frac{1}{2}t^{2} + \frac{3}{8}(4x^{2}t^{2} - 4xt^{3} + t^{4}) + \cdots \\
&= 1 + xt + \left(\frac{3}{2}x^{2} - \frac{1}{2}\right)t^{2} + \cdots \\
&= f_{0}(x) + f_{1}(x)t + f_{2}(x)t^{2} + \cdots \\
&= \sum\limits_{l=0}^{\infty} f_{l}(x) t^{l}
\end{align*}
Φ ( y ) = ( 1 − y ) − 2 1 = 1 + 2 1 y + 2 ! 2 1 ⋅ 2 3 y 2 + ⋯ = 1 + 2 1 ( 2 x t − t 2 ) + 8 3 ( 2 x t − t 2 ) 2 + ⋯ = 1 + x t − 2 1 t 2 + 8 3 ( 4 x 2 t 2 − 4 x t 3 + t 4 ) + ⋯ = 1 + x t + ( 2 3 x 2 − 2 1 ) t 2 + ⋯ = f 0 ( x ) + f 1 ( x ) t + f 2 ( x ) t 2 + ⋯ = l = 0 ∑ ∞ f l ( x ) t l
Now, by substituting the above series into the differential equation ( 1 ) (1) ( 1 ) , we obtain the following.
0 = ( 1 − x 2 ) ∂ 2 ( ∑ l = 0 ∞ f l ( x ) t l ) ∂ x 2 − 2 x ∂ ( ∑ l = 0 ∞ f l ( x ) t l ) ∂ x + t ∂ 2 ∂ t 2 ( t ∑ l = 0 ∞ f l ( x ) t l ) = ( 1 − x 2 ) ∑ l = 0 ∞ f l ′ ′ ( x ) t l − 2 x ∑ l = 0 ∞ f l ′ ( x ) t l + ∑ l = 0 ∞ l ( l + 1 ) f l ( x ) t l = ∑ l = 0 ∞ [ ( 1 − x 2 ) f l ′ ′ ( x ) − 2 x f l ′ ( x ) + l ( l + 1 ) f l ( x ) ] t l
\begin{align*}
&\quad \ 0 \\
&= (1-x^{2})\frac{ \partial ^{2} \left( \sum\limits_{l=0}^{\infty} f_{l}(x) t^{l}\right)}{ \partial x^{2} }-2x\frac{ \partial \left( \sum\limits_{l=0}^{\infty} f_{l}(x) t^{l}\right)}{ \partial x } + t\frac{ \partial ^{2}}{ \partial t^{2} }\left( t \sum\limits_{l=0}^{\infty} f_{l}(x) t^{l}\right) \\
&=
(1-x^{2}) \sum\limits_{l=0}^{\infty} f^{\prime \prime}_{l}(x) t^{l} - 2x \sum\limits_{l=0}^{\infty} f^{\prime}_{l}(x) t^{l} + \sum\limits_{l=0}^{\infty}l(l+1) f_{l}(x) t^{l} \\
&= \sum\limits_{l=0}^{\infty} \left[ (1 - x^{2}) f_{l}^{\prime \prime}(x) - 2x f_{l}^{\prime}(x) + l(l+1)f_{l}(x) \right] t^{l}
\end{align*}
0 = ( 1 − x 2 ) ∂ x 2 ∂ 2 ( l = 0 ∑ ∞ f l ( x ) t l ) − 2 x ∂ x ∂ ( l = 0 ∑ ∞ f l ( x ) t l ) + t ∂ t 2 ∂ 2 ( t l = 0 ∑ ∞ f l ( x ) t l ) = ( 1 − x 2 ) l = 0 ∑ ∞ f l ′′ ( x ) t l − 2 x l = 0 ∑ ∞ f l ′ ( x ) t l + l = 0 ∑ ∞ l ( l + 1 ) f l ( x ) t l = l = 0 ∑ ∞ [ ( 1 − x 2 ) f l ′′ ( x ) − 2 x f l ′ ( x ) + l ( l + 1 ) f l ( x ) ] t l
Since this equation is an identity in t t t , the coefficients of each t l t^{l} t l must all be equal to 0 0 0 . Thus, we have the following.
( 1 − x 2 ) f l ′ ′ ( x ) − 2 x f l ′ ( x ) + l ( l + 1 ) f l ( x ) = 0
(1 - x^{2}) f_{l}^{\prime \prime}(x) - 2x f_{l}^{\prime}(x) + l(l+1)f_{l}(x) = 0
( 1 − x 2 ) f l ′′ ( x ) − 2 x f l ′ ( x ) + l ( l + 1 ) f l ( x ) = 0
This is the Legendre differential equation, and its solution is the Legendre polynomials. Therefore, since f l ( x ) = P l ( x ) f_{l}(x) = P_{l}(x) f l ( x ) = P l ( x ) , Φ \Phi Φ is the generating function of Legendre polynomials.
■