logo

Generalized Dirichlet Product Representation for partial Sums of Arithmetic Functions 📂Number Theory

Generalized Dirichlet Product Representation for partial Sums of Arithmetic Functions

Lemma 1

Let’s define h=fgh = f \ast g for the arithmetic function f,g,hf,g,h as follows: F(x):=nxf(x)G(x):=nxg(x)H(x):=nxh(x) F (x) := \sum_{n \le x} f(x) \\ G (x) := \sum_{n \le x} g(x) \\ H (x) := \sum_{n \le x} h(x) Then, H=fG=gF H = f \circ G = g \circ F where the operation \circ refers to the generalized convolution. In other words, the following is true: H(x)=nxf(n)G(xn)=nxg(n)F(xn) H(x) = \sum_{n \le x} f(n) G \left( {{ x } \over { n }} \right) = \sum_{n \le x} g(n) F \left( {{ x } \over { n }} \right)

Proof

U(x):={0,0<x<11,1x U(x) := \begin{cases} 0 &, 0 < x < 1 \\ 1 &, 1 \le x\end{cases} If we define a function U:R+CU : \mathbb{R}^{+} \to \mathbb{C} such that it is in x(0,1)x \in (0,1) to U(x)=0U(x) = 0 as follows, F=fUG=gU F = f \circ U \\ G = g \circ U

Properties of Generalized Convolution: If α\alpha and β\beta are arithmetic functions and F,G:R+CF , G : \mathbb{R}^{+} \to \mathbb{C} is a function where the function value is 00 in x(0,1)x \in (0,1), then α(βF)=(α β)F \alpha \circ \left( \beta \circ F \right) = \left( \alpha \ast\ \beta \right) \circ F

According to the properties of generalized convolution, fG=f(gU)=(f g)U=HgF=g(fU)=(g f)U=H f \circ G = f \circ \left( g \circ U \right) = \left( f \ast\ g \right) \circ U = H \\ g \circ F = g \circ \left( f \circ U \right) = \left( g \ast\ f \right) \circ U = H


  1. Apostol. (1976). Introduction to Analytic Number Theory: p65. ↩︎