logo

Associated Legendre Differential Equations and Polynomials 📂Odinary Differential Equations

Associated Legendre Differential Equations and Polynomials

Definition1

The differential equation given below is called the associated Legendre differential equation.

(1x2)d2ydx22xdydx+[+l(l+1)m21x2]y= 0orddx[(1x2)y]+[l(l+1)m21x2]y= 0 \begin{equation} \begin{aligned} &&(1-x^{2})\frac{ d^{2}y }{ dx^{2} }-2x \frac{dy}{dx}+\left[ +l(l+1)-\frac{m^{2}}{1-x^{2}} \right]y =&\ 0 \\ \mathrm{or} && \frac{ d }{ dx } \left[ (1-x^{2})y^{\prime} \right] +\left[ l(l+1)-\frac{m^{2}}{1-x^{2}} \right]y =&\ 0 \end{aligned} \label{1} \end{equation}

The solution to the associated Legendre differential equation is denoted as Plm(x)P_{l}^{m}(x), and this is called the associated Legendre polynomial or the generalized Legendre polynomial.

Plm(x)=(1x2)m2dmdxmPl(x)=(1x2)m2dmdxm[12ll!dldxl(x21)l] \begin{align*} P_{l}^{m}(x)&= (1-x ^{2})^{\frac{|m|}{2}} \frac{ d^{|m|} }{ dx^{|m|} } P_{l}(x) \\ &=(1-x ^{2})^{\frac{|m|}{2}} \frac{ d^{|m|} }{ dx^{|m|} }\left[ \dfrac{1}{2^{l} l!} \dfrac{d^{l}}{dx^{l}}(x^2-1)^{l}\right] \end{align*}

Here, Pl(x)P_{l}(x) is the Legendre polynomial. In cases distinguished by the sign of mm,

Plm(x)=(1x2)m212ll!dl+mdxl+m(x21)l P_{l}^{m}(x) = (1-x ^{2})^{\frac{m}{2}} \dfrac{1}{2^{l} l!} \dfrac{d^{l+m}}{dx^{l+m}}(x^2-1)^{l}

Plm=(1)m(lm)!(l+m)!Plm(x) P_{l}^{-m}=(-1)^{m}\frac{(l-m)!}{(l+m)!}P_{l}^{m}(x)

The associated Legendre polynomials appear when solving the Laplace equation in spherical coordinates. Here, the constants ll, mm are related to the quantum numbers in quantum mechanics.

Solution

For m=0m=0, it’s the Legendre differential equation. Based on the solution for this case, we can also find a solution for when it is m0m\ne 0. Initially, since the solution to the associated Legendre differential equation is determined by the constants ll, mm, let’s denote it as follows.

y=Plm(x) y=P_{l}^{m}(x)

Substitute this into (1)\eqref{1} and organize it as below.

ddx[(1x2)dPlm(x)dx]+[l(l+1)m21x2]Plm(x)=0 \begin{equation} \frac{ d }{ dx }\left[ (1-x^{2})\frac{ d P_{l}^{m}(x)}{ dx } \right]+\left[ l(l+1)-\frac{m^{2}}{1-x^{2}} \right]P_{l}^{m}(x)=0 \label{2} \end{equation}

And let’s assume that the solution has the form below.

Plm(x)=(1x2)m2u(x) P_{l}^{m}(x)=(1-x^{2})^{\frac{|m|}{2}}u(x)

Differentiating xx once gives

dPlm(x)dx=mx(1x2)m21u(x)+(1x2)m2u(x) \frac{ d P_{l}^{m}(x)}{ d x }=-|m|x(1-x^{2})^{\frac{|m|}{2}-1}u(x)+(1-x^{2})^{\frac{|m|}{2}}u^{\prime}(x)

Substituting this into the first term of (2)\eqref{2} and organizing gives the following.

ddx[(1x2)dPlm(x)dx]= ddx[mx(1x2)m2u(x)+(1x2)m2+1u(x)]= m(1x2)m2u(x)+m2x2(1x2)m21u(x)mx(1x2)m2u(x)(m+2)x(1x2)m2u(x)+(1x2)m2+1u(x)= (1x2)m2+1u(x)2(m+1)(1x2)m2u(x)[m(m+1)x2m](1x2)m21u(x) \begin{align*} \frac{ d }{ dx }\left[ (1-x^{2})\frac{ d P_{l}^{m}(x)}{ dx } \right] =&\ \frac{ d }{ dx }\left[ -|m|x(1-x^{2})^{\frac{|m|}{2}}u(x)+(1-x^{2})^{\frac{|m|}{2}+1}u^{\prime}(x) \right] \\ =&\ -|m|(1-x^{2})^{\frac{|m|}{2}}u(x)+|m|^{2}x^{2}(1-x^{2})^{\frac{|m|}{2}-1}u(x) \\ & -|m|x(1-x^{2})^{\frac{|m|}{2}}u^{\prime}(x)-(|m|+2)x(1-x^{2})^{\frac{|m|}{2}}u^{\prime}(x) \\ & +(1-x^{2})^{\frac{|m|}{2}+1}u^{\prime \prime}(x) \\ =&\ (1-x^{2})^{\frac{|m|}{2}+1}u^{\prime \prime}(x)-2(|m|+1)(1-x^{2})^{\frac{|m|}{2}}u^{\prime}(x) \\ & -[|m|(|m|+1)x^{2}-|m|] (1-x^{2})^{\frac{|m|}{2}-1}u(x) \end{align*}

Multiplying both sides by 1(1x2)m/2\dfrac{1}{(1-x^{2})^{|m|/2}} gives

1(1x2)m/2ddx[(1x2)dPlm(x)dx]= (1x2)u(x)2(m+1)xu(x)[m(m+1)x2m](1x2)1u(x) \begin{align*} &\frac{1}{(1-x^{2})^{|m|/2}}\frac{ d }{ dx }\left[ (1-x^{2})\frac{ d P_{l}^{m}(x)}{ dx } \right] \\ =&\ (1-x^{2})u^{\prime \prime}(x)-2(|m|+1)xu^{\prime}(x) -[|m|(|m|+1)x^{2}-|m|] (1-x^{2})^{-1}u(x) \end{align*}

Therefore, multiplying both sides of (2)\eqref{2} by 1(1x2)m/2\dfrac{1}{(1-x^{2})^{|m|/2}} gives

(1x2)u(x)2(m+1)xu(x)(m(m+1)x2m1x2+l(l+1)m21x2)u(x)=0 \begin{equation} \begin{aligned} &(1-x^{2})u^{\prime \prime}(x)-2(|m|+1)xu^{\prime}(x) \\ &-\left( \frac{|m|(|m|+1)x^{2}-|m|}{1-x^{2}}+l(l+1)-\frac{m^{2}}{1-x^{2}}\right)u(x)=0 \end{aligned} \label{1} \end{equation}

Organizing the coefficients of u(x)u(x) gives the following.

m(m+1)x2m1x2+l(l+1)m21x2= m(m+1)x2m+l(l+1)(1x2)m21x2= m2(1x2)m(1x2)+l(l+1)(1x2)1x2= l(l+1)m2m= l(l+1)m(m+1) \begin{align*} &\frac{|m|(|m|+1)x^{2}-|m|}{1-x^{2}}+l(l+1)-\frac{m^{2}}{1-x^{2}} \\ =&\ \frac{|m|(|m|+1)x^{2}-|m|+l(l+1)(1-x^{2})-m^{2}}{1-x^{2}} \\ =&\ \frac{-m^{2}(1-x^{2})-|m|(1-x^{2})+l(l+1)(1-x^{2})}{1-x^{2}} \\ =&\ l(l+1)-m^{2}-|m| \\ =&\ l(l+1)-|m|(|m|+1) \end{align*}

Thus, (3)\eqref{3} is organized into the form below.

(1x2)d2udx22(m+1)xdudx+[l(l+1)m(m+1)]u=0 \begin{equation} (1-x^{2})\frac{ d^{2} u }{ d x^{2} }-2(|m|+1)x\frac{ d u}{ dx }+[l(l+1)-|m|(|m|+1)]u=0 \label{4} \end{equation}

If it is m=0m=0, it indeed becomes the Legendre differential equation. Therefore, the solution for when it is m=0|m|=0 is Pl0(x)=Pl(x)P_{l}^{0}(x)=P_{l}(x). Now, let’s differentiate (4)(4) relative to xx again. Organizing the coefficients gives the following equation.

(1x2)d3udx32[(m+1)+1]xd2udx2+[l(l+1)(m+1)(m+2)]dudx=0 \begin{equation} (1-x^{2}) \frac{ d^{3} u }{ d x^{3} } -2[(|m|+1)+1]x\frac{ d^{2} u}{ dx^{2} }+[l(l+1)-(|m|+1)(|m|+2)]\frac{ d u}{ d x}=0 \label{5} \end{equation}

Differentiating (5)\eqref{5} relative to xx again and organizing the coefficients gives the following.

(1x2)d4udx42[(m+2)+1]xd3udx3+[l(l+1)(m+2)(m+3)]d2udx2=0 \begin{equation} (1-x^{2}) \frac{ d^{4} u }{ d x^{4} } -2[(|m|+2)+1]x\frac{ d^{3} u}{ dx^{3} }+[l(l+1)-(|m|+2)(|m|+3)]\frac{ d^{2} u}{ d x^{2}}=0 \label{6} \end{equation}

Examining the equations above shows that when (4)\eqref{4} is substituted with uu into dudx\dfrac{ d u}{ d x }, and m|m| is substituted with m+1|m|+1 into (5)\eqref{5}, we can obtain (5)\eqref{5}. Using the same method of substitution for (5)\eqref{5} gives (6)\eqref{6}. From this, we can learn that the solution when it is m=0|m|=0 is Pl(x)P_{l}(x), when it is m=1|m|=1 it is ddxPl(x)\dfrac{ d }{ d x }P_{l}(x), and when it is m=2|m|=2 it is d2dx2Pl(x)\dfrac{d^{2}}{dx^{2}}P_{l}(x). Therefore, generalizing this gives the following.

u(x)=dmdxmPl(x) u(x)=\frac{d^{|m|}}{dx^{{|m|}}}P_{l}(x)

Therefore, the associated Legendre polynomials are as follows.

Plm(x)=(1x2)m2dmdxmPl(x)=(1x2)m2dmdxm[12ll!dldxl(x21)l] \begin{align*} P_{l}^{m}(x)&= (1-x ^{2})^{\frac{|m|}{2}} \frac{ d^{|m|} }{ dx^{|m|} } P_{l}(x) \\ &=(1-x ^{2})^{\frac{|m|}{2}} \frac{ d^{|m|} }{ dx^{|m|} }\left[ \dfrac{1}{2^{l} l!} \dfrac{d^{l}}{dx^{l}}(x^2-1)^{l}\right] \end{align*}


  1. Mary L. Boas, Mathematical Methods in the Physical Sciences (3rd Edition, 2008), p597-598 ↩︎