The Mean and Variance of the Chi-Squared Distribution
📂Probability DistributionThe Mean and Variance of the Chi-Squared Distribution
If X∼χ2(r) then
E(X)=rVar(X)=2r
Derivation
Strategy: Fortunately, the moment generating function of the chi-squared distribution is known.
Moment of the chi-squared distribution: Let’s say X∼χ2(r). If k>−r/2, then there exists the kth moment
EXk=Γ(r/2)2kΓ(r/2+k)
Mean
EX1=Γ(r/2)21Γ(r/2+1)=2⋅2r=r
■
Variance
EX2=Γ(r/2)22Γ(r/2+2)=4⋅2r+2⋅2r=r2+2r
Therefore,
Var(X)=(r2+2r)−r2=2r
■