logo

The Mean and Variance of the Chi-Squared Distribution 📂Probability Distribution

The Mean and Variance of the Chi-Squared Distribution

Formula

If Xχ2(r)X \sim \chi^{2} (r) then E(X)=rVar(X)=2r E(X) = r \\ \Var (X) = 2r

Derivation

Strategy: Fortunately, the moment generating function of the chi-squared distribution is known.

Moment of the chi-squared distribution: Let’s say Xχ2(r)X \sim \chi^{2} (r). If k>r/2k > - r/ 2, then there exists the kkth moment EXk=2kΓ(r/2+k)Γ(r/2) E X^{k} = {{ 2^{k} \Gamma (r/2 + k) } \over { \Gamma (r/2) }}

Mean

EX1=21Γ(r/2+1)Γ(r/2)=2r2=r EX^{1} = {{ 2^{1} \Gamma (r/2 + 1) } \over { \Gamma (r/2) }} = 2 \cdot {{ r } \over { 2 }} = r

Variance

EX2=22Γ(r/2+2)Γ(r/2)=4r+22r2=r2+2r EX^{2} = {{ 2^{2} \Gamma (r/2 + 2) } \over { \Gamma (r/2) }} = 4 \cdot {{ r + 2 } \over { 2 }} \cdot {{ r } \over { 2 }} = r^{2} + 2r Therefore, Var(X)=(r2+2r)r2=2r \Var(X) = \left( r^{2} + 2r \right) - r^{2} = 2r