logo

Derivation of the Beta Distribution from Two Independent Gamma Distributions 📂Probability Distribution

Derivation of the Beta Distribution from Two Independent Gamma Distributions

Theorem

If two random variables X1,X2X_{1},X_{2} are independent and X1Γ(α1,1)X_{1} \sim \Gamma ( \alpha_{1} , 1), X2Γ(α2,1)X_{2} \sim \Gamma ( \alpha_{2} , 1), then X1X1+X2beta(α1,α2) {{ X_{1} } \over { X_{1} + X_{2} }} \sim \text{beta} \left( \alpha_{1} , \alpha_{2} \right)

Explanation

If two data points follow the gamma distribution and are independent, it could be possible to explain the ratio of their sum using probability distribution theory. Specifically, the gamma distribution allows for relatively free movement among various probability distributions, so it’s good to know as a fact.

Derivation1

Strategy: Direct deduction from the joint density function of gamma distributions.

Definition of gamma distribution: For k,θ>0k, \theta > 0, the following probability density function for a continuous probability distribution Γ(k,θ)\Gamma ( k , \theta ) is called the gamma distribution. f(x)=1Γ(k)θkxk1ex/θ,x>0 f(x) = {{ 1 } \over { \Gamma ( k ) \theta^{k} }} x^{k - 1} e^{ - x / \theta} \qquad , x > 0

Definition of beta distribution: For α,β>0\alpha , \beta > 0, the following probability density function for a continuous probability distribution Beta(α,β)\text{Beta}(\alpha,\beta) is called the beta distribution. f(x)=1B(α,β)xα1(1x)β1,x[0,1] f(x) = {{ 1 } \over { B(\alpha,\beta) }} x^{\alpha - 1} (1-x)^{\beta - 1} \qquad , x \in [0,1]

Since X1,X2X_{1}, X_{2} is independent, the joint density function hh for x1,x2(0,)x_{1} , x_{2} \in (0, \infty) is as follows. h(x1,x2)=1Γ(α1)Γ(α2)x1α11x2α21ex1x2 h(x_{1} , x_{2}) = {{ 1 } \over { \Gamma (\alpha_{1}) \Gamma (\alpha_{2}) }} x_{1}^{\alpha_{1} -1 } x_{2}^{\alpha_{2} -1 } e^{-x_{1} - x_{2}} Now, if we let Y1:=X1+X2Y_{1} := X_{1} + X_{2} and Y2:=X1/(X1+X2)Y_{2} := X_{1} / (X_{1} + X_{2}), then x1=y1y2x_{1} = y_{1} y_{2} and x2=y1(1y2)x_{2} = y_{1} ( 1 - y_{2} ), so J=y2y11y2y1=y10 J = \begin{vmatrix} y_{2} & y_{1} \\ 1 - y_{2} & -y_{1} \end{vmatrix} = - y_{1} \ne 0 Therefore, the joint density function of Y1,Y2Y_{1}, Y_{2} for y1(0,),y2(0,1)y_{1} \in (0,\infty) , y_{2} \in (0,1) is g(y1,y2)=y11Γ(α1)Γ(α2)(y1y2)α11[y1(1y2)]α21ey1=1Γ(α1)Γ(α2)y1α1+α21ey1y2α11(1y2)α21=1Γ(α1+α2)y1α1+α21ey1Γ(α1+α2)Γ(α1)Γ(α2)y2α11(1y2)α21 \begin{align*} g(y_{1},y_{2}) =& |y_{1}| {{ 1 } \over { \Gamma (\alpha_{1}) \Gamma (\alpha_{2}) }} (y_{1} y_{2})^{\alpha_{1} -1 } \left[ y_{1} ( 1 - y_{2} ) \right]^{\alpha_{2} -1 } e^{-y_{1}} \\ =& {{ 1 } \over { \Gamma (\alpha_{1}) \Gamma (\alpha_{2}) }} y_{1}^{\alpha_{1} + \alpha_{2} - 1} e^{-y_{1}} \cdot y_{2}^{\alpha_{1} - 1} (1-y_{2})^{\alpha_{2} - 1} \\ =& {{ 1 } \over { \Gamma ( \alpha_{1} + \alpha_{2}) }} y_{1}^{\alpha_{1} + \alpha_{2} - 1} e^{-y_{1}} \cdot {{ \Gamma ( \alpha_{1} + \alpha_{2}) } \over { \Gamma (\alpha_{1}) \Gamma (\alpha_{2}) }} y_{2}^{\alpha_{1} - 1} (1-y_{2})^{\alpha_{2} - 1} \end{align*} The marginal density function of Y1,Y2Y_{1},Y_{2} g1,g2g_{1}, g_{2} is g1(y1)=1Γ(α1+α2)y1α1+α21ey1g2(y2)=Γ(α1+α2)Γ(α1)Γ(α2)y2α11(1y2)α21 g_{1}(y_{1}) = {{ 1 } \over { \Gamma ( \alpha_{1} + \alpha_{2}) }} y_{1}^{\alpha_{1} + \alpha_{2} - 1} e^{-y_{1}} \\ g_{2}(y_{2}) = {{ \Gamma ( \alpha_{1} + \alpha_{2}) } \over { \Gamma (\alpha_{1}) \Gamma (\alpha_{2}) }} y_{2}^{\alpha_{1} - 1} (1-y_{2})^{\alpha_{2} - 1} Thus, Y1Γ(α1+α2,1)Y2beta(α1,α2) Y_{1} \sim \Gamma ( \alpha_{1} + \alpha_{2} ,1 ) \\ Y_{2} \sim \text{beta} (\alpha_{1} , \alpha_{2})


  1. Hogg et al. (2013). Introduction to Mathematical Statistcs(7th Edition): 164-165. ↩︎