Proving that Every Separable Hilbert Space is Isometric to the l^2 space
📂Hilbert Space Proving that Every Separable Hilbert Space is Isometric to the l^2 space Theorem Every infinite-dimensional separable Hilbert space H H H is isometrically isomorphic to ℓ 2 \ell^{2} ℓ 2 .
Description The fact that a separable Hilbert space is isometrically isomorphic to ℓ 2 \ell^{2} ℓ 2 essentially means that in the study of Hilbert spaces, one can focus solely on ℓ 2 \ell^{2} ℓ 2 .
Proof Gram-Schmidt Orthogonalization of Separable Hilbert Spaces
Every separable Hilbert space has an orthonormal basis.
Corollary of Bessel’s Inequality
If { v k } k ∈ N \left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} { v k } k ∈ N is an orthonormal set in the Hilbert space H H H , the following holds:
For every { c k } k ∈ N ∈ ℓ 2 \left\{ c_{k} \right\}_{k \in \mathbb{N}} \in \ell^{2} { c k } k ∈ N ∈ ℓ 2 , the infinite series ∑ k ∈ N c k v k \sum_{k \in \mathbb{N}} c_{k} \mathbf{v}_{k} ∑ k ∈ N c k v k converges.
Following the Gram-Schmidt orthogonalization, the Hilbert space H H H obtains an orthonormal basis { e k } k ∈ N \left\{ \mathbf{e}_{k} \right\}_{k \in \mathbb{N}} { e k } k ∈ N , and according to the corollary, the convergence of ∑ k ∈ N c k e k \sum_{k \in \mathbb{N}} c_{k} \mathbf{e}_{k} ∑ k ∈ N c k e k is guaranteed for every { c k } k ∈ N ∈ ℓ 2 \left\{ c_{k} \right\}_{k \in \mathbb{N}} \in \ell^{2} { c k } k ∈ N ∈ ℓ 2 . Now, consider { δ k } k ∈ N \left\{ \delta_{k} \right\}_{k \in \mathbb{N}} { δ k } k ∈ N as the orthonormal basis of ℓ 2 \ell^{2} ℓ 2 and define the operator U : H → ℓ 2 U : H \to \ell^{2} U : H → ℓ 2 as follows:
U ( ∑ k ∈ N c k e k ) : = ∑ k ∈ N c k δ k
U \left( \sum_{k \in \mathbb{N}} c_{k} \mathbf{e}_{k} \right) := \sum_{k \in \mathbb{N}} c_{k} \delta_{k}
U ( k ∈ N ∑ c k e k ) := k ∈ N ∑ c k δ k
Then, U U U is a bijective mapping between H H H and ℓ 2 \ell^{2} ℓ 2 .
Equivalence Conditions of Orthonormal Bases : Assume H H H is a Hilbert space. For an orthonormal system { e k } k ∈ N ⊂ H \left\{ \mathbf{e}_{k} \right\}_{k \in \mathbb{N}} \subset H { e k } k ∈ N ⊂ H of H H H , the following are equivalent:
(i): { e k } k ∈ N ⊂ H \left\{ \mathbf{e}_{k} \right\}_{k \in \mathbb{N}} \subset H { e k } k ∈ N ⊂ H is an orthonormal basis of H H H . (ii): For every x ∈ H \mathbf{x}\in H x ∈ H
x = ∑ k ∈ N ⟨ x , e k ⟩ e k
\mathbf{x}= \sum_{k \in \mathbb{N}} \langle \mathbf{x}, \mathbf{e}_{k} \rangle \mathbf{e}_{k}
x = k ∈ N ∑ ⟨ x , e k ⟩ e k (iv): For every x ∈ H \mathbf{x}\in H x ∈ H
∑ k ∈ N ∣ ⟨ x , e k ⟩ ∣ 2 = ∥ x ∥ 2
\sum_{k \in \mathbb{N}} \left| \langle \mathbf{x}, \mathbf{e}_{k} \rangle \right|^{2} = \left\| \mathbf{x}\right\|^{2}
k ∈ N ∑ ∣ ⟨ x , e k ⟩ ∣ 2 = ∥ x ∥ 2 Every v ∈ H \mathbf{v} \in H v ∈ H uniquely decomposes with respect to the orthonormal basis { e k } k ∈ N \left\{ \mathbf{e}_{k} \right\}_{k \in \mathbb{N}} { e k } k ∈ N as follows:
v = ∑ k ∈ N ⟨ v , e k ⟩ e k
\mathbf{v} = \sum_{k \in \mathbb{N}} \left\langle \mathbf{v} , \mathbf{e}_{k} \right\rangle \mathbf{e}_{k}
v = k ∈ N ∑ ⟨ v , e k ⟩ e k
Therefore,
∥ U v ∥ 2 = ∥ ∑ k ∈ N ⟨ v , e k ⟩ δ k ∥ 2 = ∑ k ∈ N ∣ ⟨ v , e k ⟩ ∣ 2 = ∥ v ∥ 2
\begin{align*}
\left\| U \mathbf{v} \right\|^{2} =& \left\| \sum_{k \in \mathbb{N}} \left\langle \mathbf{v} , \mathbf{e}_{k} \right\rangle \delta_{k} \right\|^{2}
\\ =& \sum_{k \in \mathbb{N}} \left| \left\langle \mathbf{v} , \mathbf{e}_{k} \right\rangle \right|^{2}
\\ =& \left\| \mathbf{v} \right\|^{2}
\end{align*}
∥ U v ∥ 2 = = = k ∈ N ∑ ⟨ v , e k ⟩ δ k 2 k ∈ N ∑ ∣ ⟨ v , e k ⟩ ∣ 2 ∥ v ∥ 2
and, U : H → ℓ 2 U : H \to \ell^{2} U : H → ℓ 2 is an isometric isomorphism.
■