logo

Proving that Every Separable Hilbert Space is Isometric to the l^2 space 📂Hilbert Space

Proving that Every Separable Hilbert Space is Isometric to the l^2 space

Theorem1

Every infinite-dimensional separable Hilbert space HH is isometrically isomorphic to 2\ell^{2}.

Description

The fact that a separable Hilbert space is isometrically isomorphic to 2\ell^{2} essentially means that in the study of Hilbert spaces, one can focus solely on 2\ell^{2}.

Proof

Gram-Schmidt Orthogonalization of Separable Hilbert Spaces

Every separable Hilbert space has an orthonormal basis.

Corollary of Bessel’s Inequality

If {vk}kN\left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} is an orthonormal set in the Hilbert space HH, the following holds:

For every {ck}kN2\left\{ c_{k} \right\}_{k \in \mathbb{N}} \in \ell^{2}, the infinite series kNckvk\sum_{k \in \mathbb{N}} c_{k} \mathbf{v}_{k} converges.

Following the Gram-Schmidt orthogonalization, the Hilbert space HH obtains an orthonormal basis {ek}kN\left\{ \mathbf{e}_{k} \right\}_{k \in \mathbb{N}}, and according to the corollary, the convergence of kNckek\sum_{k \in \mathbb{N}} c_{k} \mathbf{e}_{k} is guaranteed for every {ck}kN2\left\{ c_{k} \right\}_{k \in \mathbb{N}} \in \ell^{2}. Now, consider {δk}kN\left\{ \delta_{k} \right\}_{k \in \mathbb{N}} as the orthonormal basis of 2\ell^{2} and define the operator U:H2U : H \to \ell^{2} as follows:

U(kNckek):=kNckδk U \left( \sum_{k \in \mathbb{N}} c_{k} \mathbf{e}_{k} \right) := \sum_{k \in \mathbb{N}} c_{k} \delta_{k}

Then, UU is a bijective mapping between HH and 2\ell^{2}.

Equivalence Conditions of Orthonormal Bases: Assume HH is a Hilbert space. For an orthonormal system {ek}kNH\left\{ \mathbf{e}_{k} \right\}_{k \in \mathbb{N}} \subset H of HH, the following are equivalent:

  • (i): {ek}kNH\left\{ \mathbf{e}_{k} \right\}_{k \in \mathbb{N}} \subset H is an orthonormal basis of HH.
  • (ii): For every xH\mathbf{x}\in H x=kNx,ekek \mathbf{x}= \sum_{k \in \mathbb{N}} \langle \mathbf{x}, \mathbf{e}_{k} \rangle \mathbf{e}_{k}
  • (iv): For every xH\mathbf{x}\in H kNx,ek2=x2 \sum_{k \in \mathbb{N}} \left| \langle \mathbf{x}, \mathbf{e}_{k} \rangle \right|^{2} = \left\| \mathbf{x}\right\|^{2}

Every vH\mathbf{v} \in H uniquely decomposes with respect to the orthonormal basis {ek}kN\left\{ \mathbf{e}_{k} \right\}_{k \in \mathbb{N}} as follows:

v=kNv,ekek \mathbf{v} = \sum_{k \in \mathbb{N}} \left\langle \mathbf{v} , \mathbf{e}_{k} \right\rangle \mathbf{e}_{k}

Therefore,

Uv2=kNv,ekδk2=kNv,ek2=v2 \begin{align*} \left\| U \mathbf{v} \right\|^{2} =& \left\| \sum_{k \in \mathbb{N}} \left\langle \mathbf{v} , \mathbf{e}_{k} \right\rangle \delta_{k} \right\|^{2} \\ =& \sum_{k \in \mathbb{N}} \left| \left\langle \mathbf{v} , \mathbf{e}_{k} \right\rangle \right|^{2} \\ =& \left\| \mathbf{v} \right\|^{2} \end{align*}

and, U:H2U : H \to \ell^{2} is an isometric isomorphism.


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p82-83 ↩︎