logo

Bessel Sequences in Hilbert Spaces with Dense Subspaces 📂Hilbert Space

Bessel Sequences in Hilbert Spaces with Dense Subspaces

Theorem1

Given a Hilbert space HH, suppose that VHV \subset H, which are {vk}kNH\left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} \subset H and V=H\overline{V} = H, satisfy the following.

kNv,vk2Bv2,vV \sum_{k \in \mathbb{N}} \left| \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle \right|^{2} \le B \left\| \mathbf{v} \right\|^{2} \qquad , \mathbf{v} \in V

Then, {vk}kN\left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} is a Bessel sequence with Bessel bound BB.

Explanation

Originally, Bessel sequences had to satisfy the inequality for all vH\mathbf{v} \in H, but according to V=H\overline{V} = H, such a condition is relaxed, and it is sufficient to satisfy it only for vV\mathbf{v} \in V. Especially if HH is a Polish space, it naturally satisfies the condition.

Proof

If we let vH\mathbf{v} \in H, since HH is a separable space, there exists a {wl}lNV\left\{ \mathbf{w}_{l} \right\}_{l \in \mathbb{N}} \subset V that satisfies wlv\mathbf{w}_{l} \to \mathbf{v}. For each lNl \in \mathbb{N} and all nNn \in \mathbb{N},

k=1nwl,vk2Bwl2 \sum_{k=1}^{n} \left| \left\langle \mathbf{w}_{l} , \mathbf{v}_{k} \right\rangle \right|^{2} \le B \left\| \mathbf{w}_{l} \right\|^{2}

Then, by taking ll \to \infty,

k=1nv,vk2Bv2 \sum_{k=1}^{n} \left| \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle \right|^{2} \le B \left\| \mathbf{v} \right\|^{2}

Since this holds for all nNn \in \mathbb{N}, by taking nn \to \infty,

k=1v,vk2Bv2 \sum_{k=1}^{\infty} \left| \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle \right|^{2} \le B \left\| \mathbf{v} \right\|^{2}


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p789 ↩︎