logo

Magnetic Field Created by a Moving Point Charge 📂Electrodynamics

Magnetic Field Created by a Moving Point Charge

Overview 1

5D6FB6AA3.png

The electromagnetic field created by a moving point charge is as follows.

E(r,t)=q4πϵ0(u)3[(c2v2)u+×(u×a)]B(r,t)=1c×E(r,t) \begin{align*} \mathbf{E}(\mathbf{r}, t) &= \frac{q}{4\pi\epsilon_{0}} \frac{\cR} {( \bcR\cdot \mathbf{u} )^3 } \left[(c^2-v^2)\mathbf{u} +\bcR\times (\mathbf{u} \times \mathbf{a} ) \right] \\ \mathbf{B} (\mathbf{ r}, t) &=\frac{1}{c} \crH\times \mathbf{ E } (\mathbf{ r}, t) \end{align*}

Description

The formula for the magnetic field is specifically as follows.

B=1c14πϵ0q(u)3×[(c2v2)v+(a)v+(u)a] \mathbf{B}=-\frac{1}{c}\frac{1}{4\pi \epsilon_{0}} \frac{q}{ (\mathbf{u}\cdot \bcR)^{3}} \bcR \times \left[ (c^{2}-v^{2})\mathbf{v}+(\bcR \cdot \mathbf{a})\mathbf{v}+(\bcR \cdot \mathbf{u})\mathbf{a} \right]

Introducing the derivation process for the magnetic field.

Derivation

The Liénard-Wiechert potential represents the potential created by a moving point charge.

V(r,t)=14πϵ0qc(cv),A(r,t)=vc2V(r,t) V(\mathbf{r}, t)= \frac{1}{4\pi \epsilon_{0}} \frac{qc}{ (\cR c -\bcR\cdot \mathbf{v})} ,\quad \mathbf{A}(\mathbf{r}, t) = \frac{ \mathbf{v} } {c^2} V(\mathbf{r}, t)

The magnetic field is calculated as follows.

B=×A \quad \mathbf{B}=\nabla \times \mathbf{A}

Therefore,

×A=×(vc2V(r,t))=1c2(×Vv)=1c2(V(×v)v×(V)) \begin{align} \nabla \times \mathbf{A} &= \nabla \times \left( \frac{\mathbf{v}}{c^{2}}V(\mathbf{r},t) \right) \nonumber \\[1em] &= \frac{1}{c^{2}}\left(\nabla \times V \mathbf{v}\right) \nonumber \\[1em] &= \frac{1}{c^{2}} \Big( V(\nabla \times \mathbf{v})-\mathbf{v}\times(\nabla V) \Big) \end{align}

The third equals sign is validated by the multiplication rule for curl in ×(fA)=f(×A)A×(f)\nabla \times (f\mathbf{A}) = f(\nabla \times \mathbf{A}) - \mathbf{A} \times (\nabla f). The last two results, from ×v\nabla \times \mathbf{v}, were already computed in the Electric Field Created by a Moving Point Charge.

×v=a×tr=a×cv \nabla \times \mathbf{v}=-\mathbf{a}\times \nabla t_{r}=\frac{\mathbf{a}\times \bcR}{\cR c - \bcR\cdot \mathbf{v}}

Therefore,

V(×v)=14πϵ0qc(cv)a×cv=14πϵ0qc(a×)(cv)2 \begin{align*} V(\nabla \times \mathbf{v} )&= \frac{1}{4\pi \epsilon_{0}} \frac{qc}{ (\cR c -\bcR\cdot \mathbf{v})}\frac{\mathbf{a}\times \bcR}{\cR c - \bcR\cdot \mathbf{v}} \\ &= \frac{1}{4\pi \epsilon_{0}} \frac{qc(\mathbf{a}\times \bcR)}{ (\cR c -\bcR\cdot \mathbf{v})^{2}} \end{align*}

Here, if we set u=cv\mathbf{u}=c\crH-\mathbf{v} to cv=u\cR c - \bcR\cdot \mathbf{v}=\mathbf{u}\cdot \bcR, and preliminarily convert it to an easier form to calculate,

V(×v)=14πϵ0qc(u)(a×)(u)3 \begin{equation} V(\nabla \times \mathbf{v} )= \frac{1}{4\pi \epsilon_{0}} \frac{qc(\mathbf{u}\cdot \bcR)(\mathbf{a}\times \bcR)}{ (\mathbf{u}\cdot \bcR)^{3}} \end{equation}

V\nabla V was also calculated in the same document.

V=qc4πϵ01(cv)3[(cv)v(c2v2+a)] \nabla V = \frac{qc}{4\pi\epsilon_{0}} \frac{1}{ (\cR c -\bcR \cdot \mathbf{v} )^3} \Big[ (\cR c -\bcR \cdot \mathbf{v})\mathbf{v} - (c^2 -v^2+\bcR \cdot \mathbf{a} ) \bcR \Big]

The cross product of the same vectors is 00, so

v×V=qc4πϵ01(cv)3v×[(c2v2+a)]=qc4πϵ01(u)3[(c2v2)v×(a)v×] \begin{align} \mathbf{v}\times \nabla V &= \frac{qc}{4\pi\epsilon_{0}} \frac{1}{ (\cR c -\bcR \cdot \mathbf{v} )^3}\mathbf{v}\times \Big[ - (c^2 -v^2+\bcR \cdot \mathbf{a} ) \bcR \Big] \nonumber \\ &= \frac{qc}{4\pi\epsilon_{0}} \frac{1}{ (\mathbf{u}\cdot \bcR)^3}\left[ -(c^{2}-v^{2})\mathbf{v}\times \bcR -(\bcR\cdot \mathbf{a})\mathbf{v}\times \bcR \right] \end{align}

Substituting (2)(2), (3)(3) into (1)(1) gives

B=×A=1c214πϵ0qc(u)3[(u)(a×)+(c2v2)v×+(a)v×]=1c14πϵ0q(u)3×[(c2v2)v+(a)v+(u)a] \begin{align*} \mathbf{B}= \nabla \times \mathbf{A} &= \frac{1}{c^{2}}\frac{1}{4\pi \epsilon_{0}} \frac{qc}{ (\mathbf{u}\cdot \bcR)^{3}}\left[ (\mathbf{u}\cdot \bcR)(\mathbf{a}\times \bcR)+(c^{2}-v^{2})\mathbf{v}\times \bcR +(\bcR\cdot \mathbf{a})\mathbf{v}\times \bcR\right] \\ &=-\frac{1}{c}\frac{1}{4\pi \epsilon_{0}} \frac{q}{ (\mathbf{u}\cdot \bcR)^{3}} \bcR \times \left[ (c^{2}-v^{2})\mathbf{v}+(\bcR \cdot \mathbf{a})\mathbf{v}+(\bcR \cdot \mathbf{u})\mathbf{a} \right] \end{align*}

This result is quite similar to the form of the Electric Field Created by a Moving Point Charge.

E(r,t)=q4πϵ0(u)3[(c2v2)u+u(a)a(u)] \mathbf{E}(\mathbf{r},t) = \frac{q}{4\pi\epsilon_{0}}\frac{\cR}{(\bcR\cdot \mathbf{u})^{3}}\left[ (c^{2}-v^{2})\mathbf{u} + \mathbf{u}(\bcR\cdot\mathbf{a})-\mathbf{a}(\bcR\cdot\mathbf{u}) \right]

The only difference is that instead of u\mathbf{u}, v\mathbf{v} is used. Indeed, since ×u=×(cv)=×v\bcR\times \mathbf{u}=\cR \times (c\crH-\mathbf{v})=-\bcR\times \mathbf{v} holds, the following is obtained.

1c×E(r,t)=1c14πϵ0q(u)3×[(c2v2)u+u(a)a(u)]=1c14πϵ0q(u)3×[(c2v2)(v)v(a)a(u)]=1c14πϵ0q(u)3×[(c2v2)v+v(a)+a(u)]=B(r,t) \begin{align*} \frac{1}{c}\crH\times \mathbf{E}(\mathbf{r},t) &= \frac{1}{c}\frac{1}{4\pi\epsilon_{0}}\frac{q}{(\bcR\cdot \mathbf{u})^{3}}\bcR\times \left[ (c^{2}-v^{2})\mathbf{u} + \mathbf{u}(\bcR\cdot\mathbf{a})-\mathbf{a}(\bcR\cdot\mathbf{u}) \right] \\ &=\frac{1}{c}\frac{1}{4\pi\epsilon_{0}}\frac{q}{(\bcR\cdot \mathbf{u})^{3}}\bcR\times \left[ (c^{2}-v^{2})(-\mathbf{v}) -\mathbf{v}(\bcR\cdot\mathbf{a})-\mathbf{a}(\bcR\cdot\mathbf{u}) \right] \\ &=-\frac{1}{c}\frac{1}{4\pi\epsilon_{0}}\frac{q}{(\bcR\cdot \mathbf{u})^{3}}\bcR\times \left[ (c^{2}-v^{2})\mathbf{v} + \mathbf{v}(\bcR\cdot\mathbf{a})+\mathbf{a}(\bcR\cdot\mathbf{u}) \right] \\ &=\mathbf{B}(\mathbf{r},t) \end{align*}

In other words, the magnetic field created by a point charge is orthogonal to the vector up to the delayed position with respect to the electric field.


  1. David J. Griffiths, 기초전자기학(Introduction to Electrodynamics, 김진승 역) (4th Edition1 2014), p494-498 ↩︎