logo

The Moebius Function in Analytic Number Theory 📂Number Theory

The Moebius Function in Analytic Number Theory

Definition 1

For a prime number p1,,pkp_{1} , \cdots , p_{k}, let’s express a natural number nn as follows. The arithmetic function μ\mu defined as such is called the Möbius function. μ(n):={1,n=1(1)k,a1==ak=10,otherwise \mu (n) := \begin{cases} 1 &, n=1 \\ (-1)^{k} &, a_{1} = \cdots = a_{k} = 1 \\ 0 & , \text{otherwise} \end{cases}

Basic Properties

  • [1] Möbius series: It’s an identity II. In other words, dnμ(d)=I(n) \sum_{d \mid n } \mu (d) = I(n)
  • [2] Multiplicativity: For all m,nNm, n \in \mathbb{N} that satisfy gcd(m,n)=1\gcd (m,n) = 1, μ(mn)=μ(m)μ(n)\mu (mn) = \mu (m) \mu (n)

Description

n12345678910μ(n)1110111001dnμ(d)1000000000 \begin{matrix} n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \mu (n) & 1 & -1 & -1 & 0 & -1 & 1 & -1 & 0 & 0 & 1 \\ \sum_{d \mid n} \mu (d) & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{matrix} The Möbius function, simply put, is a function that only cares about numbers that are not multiplied by the same prime number 22 or more times. If a prime number is not multiplied more than 22 times, its sign only changes depending on whether the prime numbers are used an even or odd number of times. However, this is just an explanation of the definition. The Möbius function itself may not have an intuitive meaning, but it is a major function that appears endlessly throughout number theory, especially in analytic number theory.

Proof

[1]

Let’s say n=p1a1pkak>1n = p_{1}^{a_{1}} \cdots p_{k}^{a_{k}} > 1, then according to the binomial theorem, dnμ(d)=μ(1)+μ(p1)++μ(pk)+μ(p1p2)++μ(pk1pk)+μ(p1p2pk1pk)=1+(1)++(1)k+1++1k(k1)/2+(1)k=1+(k1)(1)+(k2)(1)2++(kk)(1)k=[1+(1)]k \begin{align*} & \sum_{d \mid n } \mu (d) \\ =& \mu (1) \\ & + \mu (p_{1}) + \cdots + \mu (p_{k}) \\ & + \mu (p_{1}p_{2}) + \cdots + \mu (p_{k-1}p_{k}) \\ & \vdots \\ & + \mu (p_{1}p_{2} \cdots p_{k-1}p_{k}) \\ =& 1 \\ & + \underbrace{(-1) + \cdots + (-1)}_{k} \\ & + \underbrace{1 + \cdots + 1}_{k(k-1)/2} \\ & \vdots \\ & + (-1)^{k} \\ =& 1 + \binom{k}{1} (-1) + \binom{k}{2}(-1)^{2} + \cdots + \binom{k}{k} (-1)^{k} \\ =& [1 + (-1)]^{k} \end{align*}

[2]

If either mm or nn has a prime square as a divisor, then from the definition of μ\mu, μ(mn)=0\mu (mn) = 0 and therefore μ(m)μ(n)=0\mu (m) \mu (n) = 0, then μ(mn)=μ(m)μ(n) \mu (mn) = \mu (m) \mu (n) Hence, let’s assume mm and nn are in the form where each prime is multiplied only once. m=p1psn=q1qt m = p_{1} \cdots p_{s} \\ n = q_{1} \cdots q_{t} Then, μ(mn)=(1)s+t=(1)s(1)t=μ(m)μ(n) \mu (mn) = (-1)^{s + t} = (-1)^{s} (-1)^{t} = \mu (m) \mu (n)


  1. Apostol. (1976). Introduction to Analytic Number Theory: p24. ↩︎