logo

Electric Field Created by a Dipole 📂Electrodynamics

Electric Field Created by a Dipole

Explanation1

596B79962.png

The potential due to an electric dipole p\mathbf{p} is as follows.

Vdip(r)=14πϵ0pr^r2=14πϵ0pcosθr2 V_{\text{dip}}(\mathbf{r}) = \dfrac{1}{4\pi\epsilon_{0}}\dfrac{\mathbf{p}\cdot\hat{\mathbf{r}}}{r^2} = \dfrac{1}{4\pi\epsilon_{0}}\dfrac{p\cos\theta}{r^{2}}

Now, let’s assume that p\mathbf{p} is at the origin and parallel to the zz axis, as shown in the figure above. Since the electric field is the gradient of the potential, in spherical coordinates it is as follows.

E=V=(Vrr^+1rVθθ^+1rsinθVϕϕ^) \mathbf{E} = - \nabla V = -\left( \dfrac{\partial V}{\partial r}\hat{\mathbf{r}} + \frac{1}{r}\dfrac{\partial V}{\partial \theta}\hat{\boldsymbol{\theta}} + \dfrac{1}{r \sin\theta}\dfrac{\partial V}{\partial \phi}\hat{\boldsymbol{\phi}}\right)

Calculating each component gives the following.

Er=Vr=14πϵ02pcosθr3Eθ=1rVθ=14πϵ0psinθr3Eϕ=1rsinθVϕ=0 \begin{align*} E_{r} &= -\dfrac{\partial V}{\partial r} = -\dfrac{1}{4\pi\epsilon_{0}}\dfrac{2p\cos\theta}{r^{3}} \\ E_{\theta} &= -\frac{1}{r}\dfrac{\partial V}{\partial \theta} = \dfrac{1}{4\pi\epsilon_{0}}\dfrac{p\sin\theta}{r^{3}} \\ E_{\phi} &= -\dfrac{1}{r \sin\theta}\dfrac{\partial V}{\partial \phi} = 0 \end{align*}

Therefore, the electric field created by the dipole is as follows.

Edip(r,θ)=14πϵ0pr3(2cosθr^+sinθθ^) \begin{equation} \mathbf{E}_{\text{dip}}(r,\theta)=\frac{1}{4 \pi \epsilon_{0}}\frac{p}{r^3}(2\cos\theta \hat{\mathbf{r}} + \sin\theta \hat{\boldsymbol{\theta}}) \end{equation}

Formula

If we convert the above equation independently of the coordinate system, it becomes as follows.

Edip(r)=14πϵ01r3[3(pr^)r^p] \mathbf{E}_{\text{dip}}(\mathbf{r}) = \frac{1}{4 \pi \epsilon_{0}}\frac{1}{r^3}[3 (\mathbf{p} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \mathbf{p}]

Derivation

First, if we express the unit vectors of the spherical coordinate system in terms of the unit vectors of the cartesian coordinate system, it is as follows.

r^= cosϕsinθx^+sinϕsinθy^+cosθz^θ^= cosϕcosθx^+sinϕcosθy^sinθz^ \begin{align*} \hat{\mathbf{r}} =&\ \cos\phi \sin\theta \hat{\mathbf{x}} + \sin\phi \sin\theta\hat{\mathbf{y}} + \cos\theta\hat{\mathbf{z}} \\ \hat{\boldsymbol{\theta}} =&\ \cos\phi \cos\theta \hat{\mathbf{x}} + \sin\phi \cos\theta\hat{\mathbf{y}} - \sin\theta\hat{\mathbf{z}} \end{align*}

Therefore, calculating the expression inside the brackets in (1)(1) gives the following.

2cosθr^+sinθθ^= 2cosϕsinθcosθx^+2sinϕsinθcosθy^+2cos2θz^+cosϕsinθcosθx^+sinϕcosθsinθy^sin2θz^= 3cosϕsinθcosθx^+3sinϕsinθcosθy^+3cos2θz^(sin2θ+cos2θ)z^= 3cosθ(cosϕsinθx^+sinϕsinθy^+cosθz^)z^= 3(p^r^)r^z^ \begin{align*} & 2\cos\theta \hat{\mathbf{r}} + \sin \theta \hat{\boldsymbol{\theta}} \\ =&\ 2 \cos\phi \sin\theta \cos\theta \hat{\mathbf{x}} + 2 \sin\phi \sin\theta \cos\theta \hat{\mathbf{y}} + 2 \cos^2 \theta \hat{\mathbf{z}} \\ & + \cos\phi \sin\theta \cos\theta \hat{\mathbf{x}} + \sin\phi \cos\theta \sin\theta \hat{\mathbf{y}} -\sin^2\theta \hat{\mathbf{z}} \\ =&\ 3\cos\phi \sin\theta \cos\theta \hat{\mathbf{x}} + 3 \sin\phi \sin\theta \cos\theta \hat{\mathbf{y}} + 3 \cos^2 \theta \hat{\mathbf{z}} -(\sin^2\theta + \cos^2\theta)\hat{\mathbf{z}} \\ =&\ 3 \cos\theta (\cos\phi \sin\theta \hat{\mathbf{x}} + \sin\phi \sin\theta\hat{\mathbf{y}} + \cos\theta\hat{\mathbf{z}}) - \hat{\mathbf{z}} \\ =&\ 3 (\hat{\mathbf{p}} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \hat{\mathbf{z}} \end{align*}

The last equality holds because of cosθ=p^r^\cos\theta = \hat{\mathbf{p}} \cdot \hat{\mathbf{r}}. Now, we obtain the following result.

Edip(r,θ)= 14πϵ0pr3(2cosθr^+sinθθ^)= 14πϵ0pr3[3(p^r^)r^z^]= 14πϵ01r3[3(pr^)r^pz^]= 14πϵ01r3[3(pr^)r^p]= Edip(r) \begin{align*} \mathbf{E}_{\text{dip}}(r,\theta) =&\ \frac{1}{4 \pi \epsilon_{0}}\frac{p}{r^3}(2\cos\theta \hat{\mathbf{r}} + \sin\theta \hat{\boldsymbol{\theta}}) \\[1em] =&\ \frac{1}{4 \pi \epsilon_{0}}\frac{p}{r^3}[3 (\hat{\mathbf{p}} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \hat{\mathbf{z}}] \\[1em] =&\ \frac{1}{4 \pi \epsilon_{0}}\frac{1}{r^3}[3 (\mathbf{p} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - p \hat{\mathbf{z}}] \\[1em] =&\ \frac{1}{4 \pi \epsilon_{0}}\frac{1}{r^3}[3 (\mathbf{p} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \mathbf{p}] \\[1em] =&\ \mathbf{E}_{\text{dip}}( \mathbf{r} ) \end{align*}


  1. David J. Griffiths, Introduction to Electrodynamics (4th Edition, 2014), p169-170 ↩︎