logo

Dirichlet Product and Multiplicative Properties 📂Number Theory

Dirichlet Product and Multiplicative Properties

Theorem 1

  • [1]: If ff and gg are multiplicative functions, then f gf \ast\ g is also a multiplicative function.
  • [2]: If gg and fgf \ast g are multiplicative functions, then ff is also a multiplicative function.

Description

These properties can be used immediately when discussing the algebraic properties of multiplicative functions:

  • Theorem [1] means, in other words, that multiplicative functions are closed under the convolution \ast.
  • Theorem [2] allows proving that the inverse of a multiplicative function is also a multiplicative function by combining it with gg and I=gg1I = g\ast g^{-1}.

Proof

[1]

Let’s say h:=f gh := f \ast\ g and gcd(m,n)=1\gcd ( m , n ) = 1 h(mn)=cmnf(c)g(mnc) h(mn) = \sum_{c \mid mn} f(c) g \left( {{ mn } \over { c }} \right) Now if we let cc to satisfy ama \mid m and bnb \mid n as c=abc = ab, then since gcd(m,n)=1\gcd ( m, n) = 1, it follows that gcd(a,b)=1\gcd (a,b) = 1, and gcd(m/a,n/b)\gcd (m/a, n/b). Therefore h(mn)=ambnf(ab)g(mnab)=ambnf(a)f(b)g(ma)g(nb)=amf(a)g(ma)bnf(b)g(nb)=h(m)h(n) \begin{align*} h(mn) =& \sum_{a \mid m \\ b \mid n} f (ab) g \left( {{ mn } \over { ab }} \right) \\ =& \sum_{a \mid m \\ b \mid n} f (a) f(b) g \left( {{ m } \over { a }} \right) g \left( {{ n } \over { b }} \right) \\ =& \sum_{a \mid m } f (a) g \left( {{ m } \over { a }} \right) \sum_{b \mid n} f(b) g \left( {{ n } \over { b }} \right) \\ =& h(m) h(n) \end{align*}

[2]

Suppose gg and h:=f gh := f \ast\ g are multiplicative functions.

Assume for the sake of contradiction that ff is not a multiplicative function. If ff were not multiplicative, then there must exist m,nm, n that satisfies f(mn)f(m)f(n)f(mn) \ne f(m) f(n) and gcd(m,n)=1\gcd (m,n) = 1. Let’s, for convenience, choose m,nm,n such that mnmn is minimized among all satisfying numbers.


Case 1. mn=1mn = 1

Since f(1)f(1)f(1)f(1) \ne f(1) f(1), it follows that f(1)1f(1) \ne 1. But 1=h(1)=f(1)g(1)=f(1)11 \begin{align*} 1 =& h(1) \\ =& f(1) g(1) \\ =& f(1) \cdot 1 \ne 1 \end{align*} thus, h=fgh = f \ast g becomes non-multiplicative, which is a contradiction.


Case 2. mn>1mn > 1

Given the assumption of m,nm,n, if ab<mnab < mn and all a,ba,b satisfying gcd(a,b)=1\gcd ( a,b) = 1 must satisfy f(ab)=f(a)f(b)f(ab) = f(a) f(b). Then, since gg is a multiplicative function, g(1)=1g(1) = 1; thus h(mn)=ambnab<mnf(ab)g(mnab)+f(mn)g(1)=ambnab<mnf(a)f(b)g(ma)g(nb)+f(mn)1=amf(a)g(ma)bnf(b)g(nb)f(m)f(n)+f(mn)=h(m)h(n)f(m)f(n)+f(mn) \begin{align*} h(mn) =& \sum_{a \mid m \\ b \mid n \\ ab < mn} f (ab) g \left( {{ mn } \over { ab }} \right) + f(mn) g(1) \\ =& \sum_{a \mid m \\ b \mid n \\ ab < mn} f (a) f(b) g \left( {{ m } \over { a }} \right) g \left( {{ n } \over { b }} \right) + f(mn) \cdot 1 \\ =& \sum_{a \mid m } f (a) g \left( {{ m } \over { a }} \right) \sum_{b \mid n} f(b) g \left( {{ n } \over { b }} \right) - f(m)f(n) + f(mn) \\ =& h(m)h(n) - f(m)f(n) + f(mn) \end{align*} Summarizing h(mn)h(m)h(n)=f(mn)f(m)f(n) h(mn) - h(m)h(n) = f(mn) - f(m) f(n) But by the assumption of ff, f(mn)f(m)f(n)f(mn) \ne f(m)f(n); thus h(mn)h(m)h(n)0 h(mn) - h(m) h(n) \ne 0 Therefore, h=fgh = f \ast g becomes non-multiplicative, which is a contradiction.


  1. Apostol. (1976). Introduction to Analytic Number Theory: p35. ↩︎