Unit Vectors of the Spherical Coordinate System Expressed in Terms of Unit Vectors of the Cartesian Coordinate System
📂Mathematical Physics Unit Vectors of the Spherical Coordinate System Expressed in Terms of Unit Vectors of the Cartesian Coordinate System Spherical Coordinate System’s Unit Vectors r ^ = cos ϕ sin θ x ^ + sin ϕ sin θ y ^ + cos θ z ^ θ ^ = cos ϕ cos θ x ^ + sin ϕ cos θ y ^ − sin θ z ^ ϕ ^ = − sin ϕ x ^ + cos ϕ y ^
\begin{align*}
\hat{\mathbf{r}} &= \cos\phi \sin\theta\hat{\mathbf{x}} + \sin\phi \sin\theta\hat{\mathbf{y}} + \cos\theta\hat{\mathbf{z}}
\\ \hat{\boldsymbol{\theta}} &= \cos\phi \cos\theta \hat{\mathbf{x}} + \sin\phi \cos\theta \hat{\mathbf{y}} - \sin\theta\hat{\mathbf{z}}
\\ \hat{\boldsymbol{\phi}} &= -\sin\phi \hat{\mathbf{x}} + \cos\phi \hat{\mathbf{y}}
\end{align*}
r ^ θ ^ ϕ ^ = cos ϕ sin θ x ^ + sin ϕ sin θ y ^ + cos θ z ^ = cos ϕ cos θ x ^ + sin ϕ cos θ y ^ − sin θ z ^ = − sin ϕ x ^ + cos ϕ y ^
Derivation
First, calculate r ^ \hat{\mathbf{r}} r ^ and then use it to derive the other two.
Radial Direction Unit Vector r ^ \hat{\mathbf{r}} r ^ r ^ = r r ^ = x x ^ + y y ^ + z z ^
\hat{\mathbf{r}}=r\hat{\mathbf{r}}=x\hat{\mathbf{x}}+y\hat{\mathbf{y}}+z\hat{\mathbf{z}}
r ^ = r r ^ = x x ^ + y y ^ + z z ^
Therefore, dividing both sides by r r r gives:
r ^ = x r x ^ + y r y ^ + z r z ^ = x r sin θ sin θ x ^ + y r sin θ sin θ y ^ + cos θ z ^ = cos ϕ sin θ x ^ + sin ϕ sin θ y ^ + cos θ z ^ = r ^ ( θ , ϕ )
\begin{align*}
\hat{\mathbf{r}}&=\frac{x}{r}\hat{\mathbf{x}}+\frac{y}{r}\hat{\mathbf{y}}+\frac{z}{r}\hat{\mathbf{z}}
\\ &= \frac{x}{r \sin\theta}\sin\theta\hat{\mathbf{x}}+\frac{y}{r \sin\theta}\sin\theta\hat{\mathbf{y}}+\cos\theta\hat{\mathbf{z}}
\\ &= \cos\phi \sin\theta \hat{\mathbf{x}} + \sin\phi \sin\theta\hat{\mathbf{y}} + \cos\theta\hat{\mathbf{z}} =\hat{\mathbf{r}}(\theta,\phi)
\end{align*}
r ^ = r x x ^ + r y y ^ + r z z ^ = r sin θ x sin θ x ^ + r sin θ y sin θ y ^ + cos θ z ^ = cos ϕ sin θ x ^ + sin ϕ sin θ y ^ + cos θ z ^ = r ^ ( θ , ϕ )
Polar Angle Direction Unit Vector θ ^ \hat{\boldsymbol{\theta}} θ ^ θ ^ \hat{\boldsymbol{\theta}} θ ^ is obtained from the r ^ \hat{\mathbf{r}} r ^ direction, where ϕ \phi ϕ remains the same, and only θ \theta θ increases by π 2 \dfrac{\pi}{2} 2 π , as follows:
θ ^ = r ^ ( θ + π 2 , ϕ ) = cos ϕ sin ( θ + π 2 ) x ^ + sin ϕ sin ( θ + π 2 ) y ^ + cos ( θ + π 2 ) z ^ = cos ϕ cos θ x ^ + sin ϕ cos θ y ^ − sin θ z ^
\begin{align*}
\hat{\boldsymbol{\theta}} &= \hat{\mathbf{r}} \left(\theta+\dfrac{\pi}{2}, \phi \right)
\\ &= \cos\phi \sin\left(\theta+\dfrac{\pi}{2}\right) \hat{\mathbf{x}} + \sin\phi \sin\left(\theta+\dfrac{\pi}{2}\right)\hat{\mathbf{y}} + \cos\left(\theta+\dfrac{\pi}{2}\right)\hat{\mathbf{z}}
\\ &= \cos\phi \cos\theta \hat{\mathbf{x}} + \sin\phi \cos\theta\hat{\mathbf{y}} - \sin\theta\hat{\mathbf{z}}
\end{align*}
θ ^ = r ^ ( θ + 2 π , ϕ ) = cos ϕ sin ( θ + 2 π ) x ^ + sin ϕ sin ( θ + 2 π ) y ^ + cos ( θ + 2 π ) z ^ = cos ϕ cos θ x ^ + sin ϕ cos θ y ^ − sin θ z ^
Azimuthal Angle Direction Unit Vector ϕ ^ \hat{\boldsymbol{\phi}} ϕ ^ Given ϕ ^ = r ^ × θ ^ \hat{\boldsymbol{\phi}}=\hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}} ϕ ^ = r ^ × θ ^ , it follows that:
ϕ ^ = ∣ x ^ y ^ z ^ cos ϕ sin θ sin ϕ sin θ cos θ cos ϕ cos θ sin ϕ cos θ − sin θ ∣ = ( − sin ϕ sin 2 θ − sin ϕ cos 2 θ ) x ^ + ( cos ϕ cos 2 θ + cos ϕ sin 2 θ ) y ^ + ( cos ϕ sin θ sin ϕ cos θ − cos ϕ sin θ sin ϕ cos θ ) z ^ = − sin ϕ ( sin 2 θ + cos 2 θ ) x ^ + cos ϕ ( cos 2 θ + sin 2 θ ) y ^ = − sin ϕ x ^ + cos ϕ y ^
\begin{align*}
\hat{\boldsymbol{\phi}} &= \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}}
\\ \cos\phi \sin\theta & \sin\phi \sin\theta\ & \cos\theta
\\ \cos\phi \cos\theta & \sin\phi \cos\theta & -\sin\theta \end{vmatrix}
\\ &= (-\sin\phi \sin^2\theta-\sin\phi \cos^2\theta)\hat{\mathbf{x}}+ (\cos\phi \cos^2\theta + \cos\phi \sin^2\theta)\hat{\mathbf{y}}
\\ &\quad +(\cos\phi \sin\theta \sin\phi \cos\theta -\cos\phi \sin\theta \sin\phi \cos\theta)\hat{\mathbf{z}}
\\ &= -\sin\phi (\sin^2\theta + \cos^2\theta) \hat{\mathbf{x}} + \cos\phi (\cos^2 \theta + \sin^2\theta) \hat{\mathbf{y}}
\\ &= -\sin\phi \hat{\mathbf{x}} + \cos\phi \hat{\mathbf{y}}
\end{align*}
ϕ ^ = x ^ cos ϕ sin θ cos ϕ cos θ y ^ sin ϕ sin θ sin ϕ cos θ z ^ cos θ − sin θ = ( − sin ϕ sin 2 θ − sin ϕ cos 2 θ ) x ^ + ( cos ϕ cos 2 θ + cos ϕ sin 2 θ ) y ^ + ( cos ϕ sin θ sin ϕ cos θ − cos ϕ sin θ sin ϕ cos θ ) z ^ = − sin ϕ ( sin 2 θ + cos 2 θ ) x ^ + cos ϕ ( cos 2 θ + sin 2 θ ) y ^ = − sin ϕ x ^ + cos ϕ y ^
Or, one can consider it in this way: When determining the direction of ϕ ^ \hat{\boldsymbol{\phi}} ϕ ^ , θ \theta θ does not influence. The direction is solely determined by the values of r r r and ϕ \phi ϕ , regardless of the value of θ \theta θ . Moreover, the direction of ϕ ^ \hat{\boldsymbol{\phi}} ϕ ^ is that in which ϕ \phi ϕ has increased by π 2 \dfrac{\pi}{2} 2 π from the r ^ \hat{\mathbf{r}} r ^ direction. Therefore, the term θ \theta θ disappears from r ^ \hat{\mathbf{r}} r ^ , and instead of ϕ \phi ϕ , ϕ + π 2 \phi + \dfrac{\pi}{2} ϕ + 2 π is substituted.
ϕ ^ = cos ( ϕ + π 2 ) x ^ + sin ( ϕ + π 2 ) y ^ = − sin ϕ x ^ + cos ϕ y ^
\begin{align*}
\hat{\boldsymbol{\phi}} &= \cos{(\phi+\dfrac{\pi}{2} )}\hat{\mathbf{x}} + \sin{(\phi + \dfrac{\pi}{2})}\hat{\mathbf{y}}
\\ &= -\sin \phi \hat{\mathbf{x}}+ \cos \phi \hat{\mathbf{y}}
\end{align*}
ϕ ^ = cos ( ϕ + 2 π ) x ^ + sin ( ϕ + 2 π ) y ^ = − sin ϕ x ^ + cos ϕ y ^
■