logo

Unit Vectors of the Spherical Coordinate System Expressed in Terms of Unit Vectors of the Cartesian Coordinate System 📂Mathematical Physics

Unit Vectors of the Spherical Coordinate System Expressed in Terms of Unit Vectors of the Cartesian Coordinate System

Spherical Coordinate System’s Unit Vectors

r^=cosϕsinθx^+sinϕsinθy^+cosθz^θ^=cosϕcosθx^+sinϕcosθy^sinθz^ϕ^=sinϕx^+cosϕy^ \begin{align*} \hat{\mathbf{r}} &= \cos\phi \sin\theta\hat{\mathbf{x}} + \sin\phi \sin\theta\hat{\mathbf{y}} + \cos\theta\hat{\mathbf{z}} \\ \hat{\boldsymbol{\theta}} &= \cos\phi \cos\theta \hat{\mathbf{x}} + \sin\phi \cos\theta \hat{\mathbf{y}} - \sin\theta\hat{\mathbf{z}} \\ \hat{\boldsymbol{\phi}} &= -\sin\phi \hat{\mathbf{x}} + \cos\phi \hat{\mathbf{y}} \end{align*}

Derivation

5EF2C2833.png

First, calculate r^\hat{\mathbf{r}} and then use it to derive the other two.

Radial Direction Unit Vector r^\hat{\mathbf{r}}

r^=rr^=xx^+yy^+zz^ \hat{\mathbf{r}}=r\hat{\mathbf{r}}=x\hat{\mathbf{x}}+y\hat{\mathbf{y}}+z\hat{\mathbf{z}}

Therefore, dividing both sides by rr gives:

r^=xrx^+yry^+zrz^=xrsinθsinθx^+yrsinθsinθy^+cosθz^=cosϕsinθx^+sinϕsinθy^+cosθz^=r^(θ,ϕ) \begin{align*} \hat{\mathbf{r}}&=\frac{x}{r}\hat{\mathbf{x}}+\frac{y}{r}\hat{\mathbf{y}}+\frac{z}{r}\hat{\mathbf{z}} \\ &= \frac{x}{r \sin\theta}\sin\theta\hat{\mathbf{x}}+\frac{y}{r \sin\theta}\sin\theta\hat{\mathbf{y}}+\cos\theta\hat{\mathbf{z}} \\ &= \cos\phi \sin\theta \hat{\mathbf{x}} + \sin\phi \sin\theta\hat{\mathbf{y}} + \cos\theta\hat{\mathbf{z}} =\hat{\mathbf{r}}(\theta,\phi) \end{align*}

Polar Angle Direction Unit Vector θ^\hat{\boldsymbol{\theta}}

θ^\hat{\boldsymbol{\theta}} is obtained from the r^\hat{\mathbf{r}} direction, where ϕ\phi remains the same, and only θ\theta increases by π2\dfrac{\pi}{2}, as follows:

θ^=r^(θ+π2,ϕ)=cosϕsin(θ+π2)x^+sinϕsin(θ+π2)y^+cos(θ+π2)z^=cosϕcosθx^+sinϕcosθy^sinθz^ \begin{align*} \hat{\boldsymbol{\theta}} &= \hat{\mathbf{r}} \left(\theta+\dfrac{\pi}{2}, \phi \right) \\ &= \cos\phi \sin\left(\theta+\dfrac{\pi}{2}\right) \hat{\mathbf{x}} + \sin\phi \sin\left(\theta+\dfrac{\pi}{2}\right)\hat{\mathbf{y}} + \cos\left(\theta+\dfrac{\pi}{2}\right)\hat{\mathbf{z}} \\ &= \cos\phi \cos\theta \hat{\mathbf{x}} + \sin\phi \cos\theta\hat{\mathbf{y}} - \sin\theta\hat{\mathbf{z}} \end{align*}

Azimuthal Angle Direction Unit Vector ϕ^\hat{\boldsymbol{\phi}}

Given ϕ^=r^×θ^\hat{\boldsymbol{\phi}}=\hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}}, it follows that:

ϕ^=x^y^z^cosϕsinθsinϕsinθ cosθcosϕcosθsinϕcosθsinθ=(sinϕsin2θsinϕcos2θ)x^+(cosϕcos2θ+cosϕsin2θ)y^+(cosϕsinθsinϕcosθcosϕsinθsinϕcosθ)z^=sinϕ(sin2θ+cos2θ)x^+cosϕ(cos2θ+sin2θ)y^=sinϕx^+cosϕy^ \begin{align*} \hat{\boldsymbol{\phi}} &= \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \cos\phi \sin\theta & \sin\phi \sin\theta\ & \cos\theta \\ \cos\phi \cos\theta & \sin\phi \cos\theta & -\sin\theta \end{vmatrix} \\ &= (-\sin\phi \sin^2\theta-\sin\phi \cos^2\theta)\hat{\mathbf{x}}+ (\cos\phi \cos^2\theta + \cos\phi \sin^2\theta)\hat{\mathbf{y}} \\ &\quad +(\cos\phi \sin\theta \sin\phi \cos\theta -\cos\phi \sin\theta \sin\phi \cos\theta)\hat{\mathbf{z}} \\ &= -\sin\phi (\sin^2\theta + \cos^2\theta) \hat{\mathbf{x}} + \cos\phi (\cos^2 \theta + \sin^2\theta) \hat{\mathbf{y}} \\ &= -\sin\phi \hat{\mathbf{x}} + \cos\phi \hat{\mathbf{y}} \end{align*}

Or, one can consider it in this way: When determining the direction of ϕ^\hat{\boldsymbol{\phi}}, θ\theta does not influence. The direction is solely determined by the values of rr and ϕ\phi, regardless of the value of θ\theta. Moreover, the direction of ϕ^\hat{\boldsymbol{\phi}} is that in which ϕ\phi has increased by π2\dfrac{\pi}{2} from the r^\hat{\mathbf{r}} direction. Therefore, the term θ\theta disappears from r^\hat{\mathbf{r}}, and instead of ϕ\phi, ϕ+π2\phi + \dfrac{\pi}{2} is substituted.

ϕ^=cos(ϕ+π2)x^+sin(ϕ+π2)y^=sinϕx^+cosϕy^ \begin{align*} \hat{\boldsymbol{\phi}} &= \cos{(\phi+\dfrac{\pi}{2} )}\hat{\mathbf{x}} + \sin{(\phi + \dfrac{\pi}{2})}\hat{\mathbf{y}} \\ &= -\sin \phi \hat{\mathbf{x}}+ \cos \phi \hat{\mathbf{y}} \end{align*}