logo

Identity for Dirichlet Products 📂Number Theory

Identity for Dirichlet Products

Definition 1

A arithmetic function defined as follows II is called the identity function. I(n):=[1n] I(n) := \left[ {{ 1 } \over { n }} \right]

  • [1] Identity series: This is the unit function uu. In other words, dnI(d)=u(n)=1 \sum_{d \mid n}I(d) = u(n) = 1
  • [2] Completely multiplicative: For all n,mNn , m \in \mathbb{N}, I(mn)=I(m)I(n)I (mn) = I(m) I(n)
  • [a] Identity element for convolution: For all arithmetic functions ff, I f=f I=f I \ast\ f = f \ast\ I = f

  • [x]=x\left[ x \right] = \lceil x \rceil is called the floor function and represents the largest integer less than or equal to xx.

Explanation

n12345678910I(n)1000000000dnI(d)1111111111 \begin{matrix} n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ I(n) & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \sum_{d \mid n} I(d) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{matrix} In most of mathematics, the name identity function is given to the function whose elements of the domain map to themselves as in i(x)=xi(x) = x, but at least in analytic number theory, it’s called the norm N(n)=nN (n) = n. As seen in II, it can be called an identity because it always exists as the identity element for convolution \ast.

Proof

[1]

I(n)=[1n]={1,n=10,n>1\displaystyle I(n) = \left[ {{ 1 } \over { n }} \right] = \begin{cases} 1 & , n=1 \\ 0 &, n>1 \end{cases} is true. Therefore, dnI(d)=1+0+=1 \sum_{d \mid n}I(d) = 1 + 0 + \cdots = 1

[2]

  • Case 1. m=n=1m = n = 1 I(mn)=I(1)=1=11=I(1)I(1)=I(m)I(n) I ( mn ) = I(1) = 1 = 1 \cdot 1 = I(1) I(1) = I(m) I(n)
  • Case 2. m=1n>1m = 1 \land n > 1 I(mn)=I(n)=1I(n)=I(m)I(n) I(mn) = I (n) = 1 \cdot I (n) = I(m) I(n)
  • Case 3. m>1n=1m > 1 \land n = 1 I(mn)=I(m)=I(m)1=I(m)I(n) I(mn) = I (m) = I(m) \cdot 1 = I(m) I(n)
  • Case 4. m>1n>1m > 1 \land n > 1 I(mn)=0=00=I(m)I(n) I(mn) = 0 = 0 \cdot 0 = I(m) I(n)

[a]

Since dd is a divisor of nn, in the case of dnd \ne n, [dn]=0\displaystyle \left[ {{ d } \over { n }} \right] = 0 and (f I)(n)=dnf(d)I(nd)=dnf(d)[dn]=f(n) (f \ast\ I)(n) = \sum_{d \mid n} f(d) I \left( {{ n } \over { d }} \right) = \sum_{d \mid n} f(d) \left[ {{ d } \over { n }} \right] = f(n) According to the commutative law of convolution of arithmetic functions, f I=I f=ff \ast\ I = I \ast\ f = f


  1. Apostol. (1976). Introduction to Analytic Number Theory: p30. ↩︎