Euler's Limit Formula Derivation for the Gamma Function
📂FunctionsEuler's Limit Formula Derivation for the Gamma Function
The following holds for the Gamma function Γ:(0,∞)→R:
Γ(x)=n→∞limx(x+1)(x+2)⋯(x+n)nxn!
Explanation
The Gamma function that we previously knew in the form of integral
Γ(x)=∫0∞tx−1e−tdt
looks entirely different, yet in 1729 Euler proved that both expressions are exactly the same. The derivation introduced in this article is somewhat simplified compared to the original, but there will be no essential problem in understanding.
Derivation
If we set Γn(x):=∫0ntx−1(1−nt)ndt as e−t=n→∞lim(1−nt)−n, then
n→∞limΓn(x)===n→∞lim∫0ntx−1(1−nt)ndt∫0∞tx−1e−tdtΓ(x)
follows. Meanwhile, substituting from Γn(x)=∫0ntx−1(1−nt)ndt to u=nt yields
Γn(x)===∫0ntx−1(1−nt)ndt∫01(nu)x−1(1−u)nndunx∫01ux−1(1−u)ndu
By the method of integration by parts,
===⋮=======∫01ux−1(1−u)ndu[(x1)ux(1−u)n]01−∫01−(x1)uxn(1−u)n−1du(xn)∫01ux(1−u)n−1du(xn)(x+1n−1)∫01ux+1(1−u)n−2du(xn)⋯(x+n−22)∫01ux+n−2(1−u)1du(xn)⋯(x+n−22)(x+n−11)∫01ux+n−1(1−u)0du(xn)⋯(x+n−22)(x+n−11)∫01ux+n−1du(xn)⋯(x+n−22)(x+n−11)[x+n1ux+n]01(xn)⋯(x+n−22)(x+n−11)(x+n1)x(x+1)(x+2)⋯(x+n)n(n−1)(n−2)⋯2⋅1⋅1x(x+1)(x+2)⋯(x+n)n!
is obtained and, therefore,
Γn(x)=nxx(x+1)(x+2)⋯(x+n)n!
is acquired. Since we have previously shown that Γ(x)=n→∞limΓn(x), the following is established:
Γ(x)==n→∞limΓn(x)n→∞limx(x+1)(x+2)⋯(x+n)nxn!
■
See Also