logo

Various Important Formulas Involving the Gamma Function and Factorials 📂Functions

Various Important Formulas Involving the Gamma Function and Factorials

Formulas

Γ(12)=π(a) \Gamma (\frac{1}{2})=\sqrt{\pi} \tag{a}

- Euler’s Reflection Formula: Γ(p)Γ(1p)=πsin(πp)(b) \Gamma (p)\Gamma (1-p)=\dfrac{\pi}{\sin(\pi p)} \tag{b}

Γ(n+12)=135(2n1)2nπ=(2n1)!!2nπ=(2n)!4nn!π,nN(c) \Gamma (n+\frac{1}{2})=\frac{1\cdot 3\cdot \cdot5 \cdots (2n-1)}{2^{n}}\sqrt{\pi}=\frac{(2n-1)!!}{2^n}\sqrt{\pi}=\frac{(2n)!}{4^{n}n!}\sqrt{\pi},\quad n\in \mathbb{N} \tag{c} !!!! is the Double Factorial.

- Binomial Coefficient: (nk)=Γ(n+1)k!Γ(nk+1)(d) \begin{pmatrix} n \\ k \end{pmatrix}=\frac{\Gamma (n+1)}{k! \Gamma (n-k+1)} \tag{d}

- Euler-Mascheroni Constant: γ=Γ(1)(e) \gamma=-\Gamma^{\prime} (1) \tag{e}

- Beta Function:

B(p,q)=Γ(p)Γ(q)Γ(p+q)(f) B(p,q)=\frac{\Gamma (p) \Gamma (q)}{\Gamma (p+q)} \tag{f}

Proofs

Gamma Function: Γ(p)={0xp1exdxp>01pΓ(p+1)p<0 \Gamma (p)=\begin{cases} \displaystyle \int_{0}^\infty x^{p-1}e^{-x}dx & p>0 \\ \frac{1}{p}\Gamma (p+1)& p<0 \end{cases}

Recursive Formula of Gamma Function: Γ(p+1)=pΓ(p) \Gamma (p+1)=p\Gamma (p)

(a)(a)

By substituting from (b)(b) to p=12p=\frac{1}{2}, we can obtain (a)(a), but let’s derive it directly. By definition of the gamma function,

Γ(12)=01xexdx \Gamma ({\textstyle \frac{1}{2}})=\int_{0}^{\infty}\frac{1}{\sqrt{x}}e^{-x}dx

Substituting with x=y2x=y^{2} in the above equation gives dx=2ydydx=2ydy, hence

Γ(12)=01yey22ydy=20ey2dy=ey2dy \Gamma ({\textstyle\frac{1}{2}}) = \int_{0}^{\infty}\frac{1}{y}e^{-y^{2}}2ydy = 2\int_{0}^{\infty}e^{-y^{2}}dy = \int_{-\infty}^{\infty}e^{-y^{2}}dy

The right side is the Gaussian Integral, so

Γ(12)=π \textstyle \Gamma (\frac{1}{2})=\sqrt{\pi}

(b)(b)

Not easy. Uses Weierstrass’s infinite product and Euler’s representation of the sinc function.

(c)(c)

By the recursion relation of the gamma function and (a)(a),

Γ(1+12)=12Γ(12)=12πΓ(2+12)=32Γ(1+12)=3122πΓ(3+12)=52Γ(2+12)=531222πΓ(4+12)=72Γ(3+12)=75312222πΓ(n+12)=(2n1)(2n3)312nπ \begin{align*} \textstyle \Gamma (1+\frac{1}{2}) &= \textstyle \frac{1}{2}\Gamma (\frac{1}{2})=\frac{1}{2}\sqrt{\pi} \\[1em] \textstyle \Gamma (2+\frac{1}{2}) &= \textstyle \frac{3}{2}\Gamma (1+\frac{1}{2})=\frac{3\cdot 1}{2\cdot2}\sqrt{\pi} \\[1em] \textstyle \Gamma (3+\frac{1}{2}) &= \textstyle \frac{5}{2}\Gamma (2+\frac{1}{2})=\frac{5\cdot 3\cdot 1}{2\cdot2 \cdot 2}\sqrt{\pi} \\[1em] \textstyle \Gamma (4+\frac{1}{2}) &= \textstyle \frac{7}{2}\Gamma (3+\frac{1}{2})=\frac{7\cdot 5\cdot 3\cdot 1}{2\cdot 2\cdot2 \cdot 2}\sqrt{\pi} \\ \vdots \\ \textstyle \Gamma (n+\frac{1}{2}) &= \textstyle \frac{(2n-1)(2n-3)\cdots 3\cdot 1}{2^n}\sqrt{\pi} \end{align*}

Where

(2n1)(2n3)312n=2n(2n1)(2n2)(2n3)(2n4)43212n2n(2n2)(2n4)42=(2n)!2n2nn(n1)(n2)21=(2n)!4n(n)! \begin{align*} \frac{(2n-1)(2n-3)\cdots 3\cdot 1}{2^n} &=\frac{{\color{blue}2n}(2n-1){\color{blue}(2n-2)}(2n-3){\color{blue}(2n-4)}\cdots {\color{blue}4}\cdot 3\cdot {\color{blue}2}\cdot 1}{2^n {\color{blue}2n(2n-2)(2n-4)\cdots 4\cdot 2}} \\ &=\frac{(2n)!}{2^n 2^n n(n-1)(n-2)\cdots 2\cdot 1} \\ &=\frac{(2n)!}{4^n (n)!} \end{align*}

Therefore,

Γ(n+12)=135(2n1)2nπ=(2n1)!!2nπ=(2n)!4nn!π \Gamma (n+{\textstyle\frac{1}{2}})=\frac{1\cdot 3\cdot \cdot5 \cdots (2n-1)}{2^{n}}\sqrt{\pi}=\frac{(2n-1)!!}{2^n}\sqrt{\pi}=\frac{(2n)!}{4^{n}n!}\sqrt{\pi}

(d)(d)

(nk)=n!k!(nk)!=Γ(n+1)k!Γ(nk+1)! \begin{pmatrix} n \\ k \end{pmatrix} = \frac{ n! }{ k!(n-k)! }=\frac{ \Gamma (n+1) }{ k! \Gamma (n-k+1)! }

Using Γ(n+1)=n!\Gamma (n+1)=n! concludes the proof in one line.

(e)(e)

Utilizes the derivatives of the gamma function and the reciprocals.

(f)(f)

Can be shown as a generalization of the binomial coefficient.