Various Important Formulas Involving the Gamma Function and Factorials
📂FunctionsVarious Important Formulas Involving the Gamma Function and Factorials
Γ(21)=π(a)
- Euler’s Reflection Formula:
Γ(p)Γ(1−p)=sin(πp)π(b)
Γ(n+21)=2n1⋅3⋅⋅5⋯(2n−1)π=2n(2n−1)!!π=4nn!(2n)!π,n∈N(c)
!! is the Double Factorial.
- Binomial Coefficient:
(nk)=k!Γ(n−k+1)Γ(n+1)(d)
- Euler-Mascheroni Constant:
γ=−Γ′(1)(e)
- Beta Function:
B(p,q)=Γ(p+q)Γ(p)Γ(q)(f)
Proofs
Gamma Function:
Γ(p)=⎩⎨⎧∫0∞xp−1e−xdxp1Γ(p+1)p>0p<0
Recursive Formula of Gamma Function:
Γ(p+1)=pΓ(p)
(a)
By substituting from (b) to p=21, we can obtain (a), but let’s derive it directly. By definition of the gamma function,
Γ(21)=∫0∞x1e−xdx
Substituting with x=y2 in the above equation gives dx=2ydy, hence
Γ(21)=∫0∞y1e−y22ydy=2∫0∞e−y2dy=∫−∞∞e−y2dy
The right side is the Gaussian Integral, so
Γ(21)=π
■
(b)
Not easy. Uses Weierstrass’s infinite product and Euler’s representation of the sinc function.
■
(c)
By the recursion relation of the gamma function and (a),
Γ(1+21)Γ(2+21)Γ(3+21)Γ(4+21)⋮Γ(n+21)=21Γ(21)=21π=23Γ(1+21)=2⋅23⋅1π=25Γ(2+21)=2⋅2⋅25⋅3⋅1π=27Γ(3+21)=2⋅2⋅2⋅27⋅5⋅3⋅1π=2n(2n−1)(2n−3)⋯3⋅1π
Where
2n(2n−1)(2n−3)⋯3⋅1=2n2n(2n−2)(2n−4)⋯4⋅22n(2n−1)(2n−2)(2n−3)(2n−4)⋯4⋅3⋅2⋅1=2n2nn(n−1)(n−2)⋯2⋅1(2n)!=4n(n)!(2n)!
Therefore,
Γ(n+21)=2n1⋅3⋅⋅5⋯(2n−1)π=2n(2n−1)!!π=4nn!(2n)!π
■
(d)
(nk)=k!(n−k)!n!=k!Γ(n−k+1)!Γ(n+1)
Using Γ(n+1)=n! concludes the proof in one line.
■
(e)
Utilizes the derivatives of the gamma function and the reciprocals.
■
(f)
Can be shown as a generalization of the binomial coefficient.
■