logo

Azimuth and Direction Cosines 📂Mathematical Physics

Azimuth and Direction Cosines

Definition1

Suppose we are given a three-dimensional vector a=(a1,a2,a3)\mathbf{a} = (a_{1}, a_{2}, a_{3}). The angles that a\mathbf{a} forms with the xx-, yy-, and zz-axes are denoted as α\alpha, β\beta, and γ\gamma, respectively. These are called direction angles.

The cosines of the direction angles cosα\cos \alpha, cosβ\cos \beta, and cosγ\cos \gamma are called direction cosines.

Properties

From the definition of direction angles and the properties of the dot product, the direction cosines are given by the following.

cosα=aiai=a1a,cosβ=ajaj=a2a,cosγ=akak=a3a \cos \alpha = \dfrac{\mathbf{a} \cdot \mathbf{i}}{|\mathbf{a}| |\mathbf{i}|} = \dfrac{a_{1}}{|\mathbf{a}|},\quad \cos \beta = \dfrac{\mathbf{a} \cdot \mathbf{j}}{|\mathbf{a}| |\mathbf{j}|} = \dfrac{a_{2}}{|\mathbf{a}|},\quad \cos \gamma = \dfrac{\mathbf{a} \cdot \mathbf{k}}{|\mathbf{a}| |\mathbf{k}|} = \dfrac{a_{3}}{|\mathbf{a}|}

Additionally, the following holds true.

cos2α+cos2β+cos2γ=a12+a22+a32a2=1 \cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma = \dfrac{a_{1}^{2} + a_{2}^{2} + a_{3}^{2}}{|\mathbf{a}|^{2}}= 1

The vector a\mathbf{a} can be expressed as follows.

a=(a1,a2,a3)=(acosα,acosβ,acosγ)=a(cosα,cosβ,cosγ) \begin{align*} \mathbf{a} &= (a_{1}, a_{2}, a_{3}) \\ &= (|\mathbf{a}|\cos \alpha, |\mathbf{a}|\cos \beta, |\mathbf{a}|\cos \gamma) \\ &= |\mathbf{a}|(\cos \alpha, \cos \beta, \cos \gamma) \end{align*}

Therefore, a unit vector in the same direction as a\mathbf{a} is as follows.

aa=(cosα,cosβ,cosγ) \dfrac{\mathbf{a}}{|\mathbf{a}|} = (\cos \alpha, \cos \beta, \cos \gamma)


  1. James Stewart, Daniel Clegg, and Saleem Watson, Calculus (early transcendentals, 9E), p850 ↩︎