logo

Proof of the Mixing Theorem in Probability Theory 📂Probability Theory

Proof of the Mixing Theorem in Probability Theory

Theorem

Let the space SS be both a metric space (S,ρ)( S , \rho) and a measurable space (S,B(S))(S,\mathcal{B}(S)).

The following are all equivalent:

  • (1): PnWPP_{n} \overset{W}{\to} P
  • (2): For every bounded, uniformly continuous function ff, there exists SfdPnSfdP\displaystyle \int_{S} f dP_{n} \to \int_{S}f d P
  • (3): For every closed set FF, there exists lim supnPn(F)P(F)\displaystyle \limsup_{n\to\infty} P_{n}(F) \le P(F)
  • (4): For every open set GG, there exists P(G)lim infnPn(G)\displaystyle P(G) \le \liminf_{n\to\infty} P_{n}(G)
  • (5): For every AA such that P(A)=0P(\partial A) = 0, there exists limnPn(A)=P(A)\displaystyle \lim_{n\to\infty} P_{n}(A) = P(A)

Description

Portmanteau is an English word meaning ‘made up of a variety of elements’ or ‘hybrid’. Translating this directly as a hybrid theorem is not very smooth, so traditionally, it is read similar to [폴ㅌ맨퉈] and translated as a hybrid theorem because it is difficult to guess the meaning by that alone. The hybrid theorem is actually generalizable not just to probability measures but also to finite measures μ\mu, and it provides an equivalent condition for weak convergence of measures, making it a very important theorem.

Proof

Strategy: To prove this, we introduce the following notation. We recommend reading the detailed explanation.

  • For elements xSx \in S and subsets ASA \subset S, and δ>0\delta >0 ρ(x,A):=inf{ρ(x,a):aA} \rho (x, A) := \inf \left\{ \rho (x,a) : a \in A \right\}

Aδ:={xS:ρ(x,A)<δ} A^{\delta} := \left\{ x \in S : \rho (x, A) < \delta \right\}

  • For some fixed FSF \subset S fδ(x):=(1ρ(x,F)/δ)+={1,xF1ρ(x,F)/δ,xFxFδ0,xFδ \begin{align*} f_{\delta}(x) :=& \left( 1 - \rho (x, F) / \delta \right)^{+} \\ =& \begin{cases} 1 &, x \in F \\ 1 - \rho (x,F)/\delta &, x \notin F \land x \in F^{\delta} \\ 0 &, x \notin F^{\delta} \end{cases} \end{align*}

Part 1. (1)    (2)(1) \implies (2)

This is trivial by the definition of weak convergence.


Part 2. (2)    (3)(2) \implies (3)

fε(x):=(1ρ(x,F)/ε)+f_{\varepsilon}(x) : = \left( 1 - \rho ( x, F) / \varepsilon \right)^{+} If fεf_{\varepsilon} is defined as above, then fεf_{\varepsilon} is bounded and uniformly continuous. Also, for all ε>0\varepsilon > 0, there exists IF(x)fε(x)IFε(x)I_{F}(x) \le f_{\varepsilon}(x) \le I_{F}^{\varepsilon} (x), so SIFdPnSfεdPnIFεdPn \int_{S} I_{F} dP_{n} \le \int_{S} f_{\varepsilon} dP_{n} \le \int I_{F^{\varepsilon}} dP_{n} Where Pn(F)=FdPn=S1FdPn\displaystyle P_{n}(F) = \int_{F} dP_{n} = \int_{S} 1_{F} dP_{n}, thus Pn(F)SfεdPn P_{n}(F) \le \int_{S} f_{\varepsilon} dP_{n} Taking both sides by lim supn\displaystyle \limsup_{n \to \infty}, since fεf_{\varepsilon} was bounded and uniformly continuous, according to (2)(2) lim supnPn(F)lim supnSfεdPn=SfεdPP(Fε) \begin{align*} \displaystyle \limsup_{n \to \infty} P_{n}(F) \le & \limsup_{n \to \infty} \int_{S} f_{\varepsilon} dP_{n} \\ =& \int_{S} f_{\varepsilon} dP \\ \le & P\left( F^{\varepsilon} \right) \end{align*} Taking both sides by limε0\displaystyle \lim_{\varepsilon \to 0}, by the continuity from above of measures lim supnPn(F)=limε0lim supnPn(F)limε0P(Fε)=P(F) \begin{align*} \limsup_{n \to \infty} P_{n}(F) =& \lim_{\varepsilon \to 0} \limsup_{n \to \infty} P_{n}(F) \\ \le & \lim_{\varepsilon \to 0} P \left( F^{\varepsilon} \right) \\ =& P\left( \overline{F} \right) \end{align*} If FF is a closed set, then because F=F\overline{F} = F lim supnPn(F)P(F) \limsup_{n\to\infty} P_{n}(F) \le P(F)


Part 3. (3)    (4)(3) \iff (4)

Let G:=FcG:= F^{c}, then GG is an open set lim supnPn(F)P(F)    P(F)lim supnPn(F)    1P(F)1lim supnPn(F)    P(G)lim infn[1Pn(F)]    P(G)lim infnPn(G) \begin{align*} & \displaystyle \limsup_{n\to\infty} P_{n}(F) \le P(F) \\ \iff & -P(F) \le -\limsup_{n\to\infty} P_{n}(F) \\ \iff & 1 -P(F) \le 1 -\limsup_{n\to\infty} P_{n}(F) \\ \iff & P(G) \le \liminf_{n\to\infty} \left[ 1 -P_{n}(F) \right] \\ \iff & P(G) \le \liminf_{n\to\infty} P_{n}(G) \end{align*}


Part 4. (3),(4)    (5)(3),(4) \implies (5)

Let’s briefly review interior, closure, and boundary.

AAAA^{\circ} \subset A \subset \overline{A}Here, the interior AA^{\circ} is the largest open subset of AA, and the closure A\overline{A} is the smallest closed superset of AA. Also, the boundary A=AA\partial A = \overline{A} \setminus A^{\circ} of AA is naturally disjoint from AA^{\circ}.

According to (3)(3) lim supnPn(A)lim supnPn(A)P(A) \limsup_{n \to \infty} P_{n}(A) \le \limsup_{n \to \infty} P_{n}\left( \overline{A} \right) \le P \left( \overline{A} \right) According to (4)(4) P(A)lim infnPn(A)lim infnPn(A) P \left( A^{\circ} \right) \le \liminf_{n \to \infty} P_{n} \left( A^{\circ} \right) \le \liminf_{n \to \infty} P_{n}(A) Since P(A)=0P \left( \partial A \right) = 0, P(A)=P(A)=P(A)P \left( A^{\circ} \right) = P(A) = P \left( \overline{A} \right) holds, P(A)=P(A)lim infnPn(A)lim supnPn(A)P(A)=P(A) P(A) = P \left( A^{\circ} \right) \le \liminf_{n \to \infty} P_{n}(A) \le \limsup_{n \to \infty} P_{n}(A) \le P \left( \overline{A} \right) = P(A) Thus, limnPn(A)=P(A) \lim_{n \to \infty} P_{n}(A) = P(A)


Part 5. (5)    (1)(5) \implies (1)

Let gCb(S)g \in C_{b}(S), in other words, gg be a bounded and continuous function as defined in SS. Let us define ν\nu for AB(S)A \in \mathcal{B}(S) as follows. ν(A):=P(g1(A)) \nu (A) := P \left( g^{-1} \left( A \right) \right) Since gg is bounded, for all xSx \in S, we can choose aa and bb that satisfy ag(x)ba \le g(x) \le b. Here, D:={α:ν({α})=0} D := \left\{ \alpha : \nu ( \left\{ \alpha \right\} ) = 0 \right\} If we consider Dc={α:ν({α})>0}=n=1{α:ν({α})>1n} D^{c} = \left\{ \alpha : \nu ( \left\{ \alpha \right\} ) > 0 \right\} = \bigcup_{n=1}^{\infty} \left\{ \alpha : \nu ( \left\{ \alpha \right\} ) > {{1} \over {n}} \right\} If a natural number nNn \in \mathbb{N} is fixed, {α:ν({α})>1n} \left\{ \alpha : \nu ( \left\{ \alpha \right\} ) > {{1} \over {n}} \right\} must be a finite set because ν(R)<\nu ( \mathbb{R}) < \infty. If it is not a finite set, it means that there are infinitely many α\alpha that satisfy ν({α})>1n\displaystyle \nu ( \left\{ \alpha \right\} ) > {{ 1 } \over { n }}, contradicting ν(R)<\nu ( \mathbb{R}) < \infty. Therefore, DcD^{c} is a countable union of finite sets, and thus, there can be at most countably many such α[a,b]\alpha \in [a,b] that satisfy ν({α})>0\nu \left( \left\{ \alpha \right\} \right) > 0.

Now, we can choose t0,,tmt_{0} , \cdots , t_{m} that satisfies the following three conditions:

  • (i): a=t0<t1<<tm=ba = t_{0} < t_{1} < \cdots < t_{m} = b
  • (ii): ν({ti})=0\nu \left( \left\{ t_{i} \right\} \right) = 0
  • (iii): titi1<εt_{i} - t_{i-1} < \varepsilon

Upon setting as Ai=g1([ti1,ti))A_{i} = g^{-1} \left( [ t_{i-1} , t_{i} ) \right), AiB(S)A_{i} \in \mathcal{B}(S) holds, and i=1mAi=S\displaystyle \bigcup_{i=1}^{m} A_{i} = S. Meanwhile, since the preimage of a continuous function preserves openness and closedness, g1((ti1,ti))g^{-1} \left( ( t_{i-1}, t_{i}) \right) is an open set in SS, and g1([ti1,ti])g^{-1} \left( [ t_{i-1}, t_{i}] \right) is a closed set in SS. Also, the interior AiA_{i}^{\circ} of AiA_{i} is its largest open subset, and the closure Ai\overline{A_{i}} is its smallest closed superset, so g1((ti1,ti))AiAiAig1([ti1,ti]) g^{-1} \left( ( t_{i-1}, t_{i}) \right) \subset A_{i}^{\circ} \subset A_{i} \subset \overline{A_{i}} \subset g^{-1} \left( [ t_{i-1}, t_{i}] \right) Whereas in condition (ii), since it was ν({ti})=0\nu \left( \left\{ t_{i} \right\} \right) = 0 hence, P(Ai)=P(Ai)=P(Ai) P \left( A_{i}^{\circ} \right) = P \left( A_{i} \right) = P \left( \overline{A_{i}} \right) This means P(Ai)=0P \left( \partial A_{i} \right) = 0, so according to the assumption (5)(5), limnPn(Ai)=P(Ai)\displaystyle \lim_{n\to\infty} P_{n}(A_{i}) = P(A_{i}) holds. h(x):=i=1mti11Ai(x) h(x) := \sum_{i=1}^{m} t_{i-1} 1_{A_{i}} (x) Now, let’s define a new function hh as above. hh becomes a simple function with mm finite values, and from condition (iii), we can see that h(x)g(x)h(x)+εh(x) \le g(x) \le h(x) + \varepsilon. Pn(g)P(g)=SgdPnSgdP=S(gh)dPn+ShdPnShdP+S(hg)dPS(gh)dPn+ShdPnShdP+S(hg)dPε+i=1mti1S1AiPni=1mti1S1AiP+ε2ε+i=1mti1[Pn(Ai)P(Ai)] \begin{align*} \left| P_{n}(g) - P(g) \right| =& \left| \int_{S} g dP_{n} - \int_{S} g dP \right| \\ =& \left| \int_{S} (g-h) dP_{n} + \int_{S} h dP_{n} - \int_{S} h dP + \int_{S} (h-g) dP \right| \\ \le & \left| \int_{S} (g-h) dP_{n} \right| + \left| \int_{S} h dP_{n} - \int_{S} h dP \right| + \left| \int_{S} (h-g) dP \right| \\ \le & \varepsilon + \left| \sum_{i=1}^{m} t_{i-1} \int_{S} 1_{A_{i}} P_{n} - \sum_{i=1}^{m} t_{i-1} \int_{S} 1_{A_{i}} P \right| + \varepsilon \\ \le & 2 \varepsilon + \left| \sum_{i=1}^{m} t_{i-1} \left[ P_{n}(A_{i}) - P(A_{i}) \right] \right| \end{align*} Meanwhile, since limnPn(Ai)=P(Ai)\displaystyle \lim_{n\to\infty} P_{n}(A_{i}) = P(A_{i}), when nn \to \infty, Pn(g)P(g)P_{n}(g) \to P(g) holds. Since gg is bounded and continuous, by the definition of weak convergence, PnWPP_{n} \overset{W}{\to} P holds.