logo

Separation Vector 📂Mathematical Physics

Separation Vector

Definition1

59660C840.png

The vector from the source point to the observation point is called the separation vector.

=rr \bcR = \mathbf{r} - \mathbf{r}^{\prime}

Description

  • Source vector r\mathbf{r}^{\prime}: The place where there is a charge or current. That is, it represents the coordinates of the origin of the electromagnetic field.
  • Position vector r\mathbf{r}: Represents the coordinates of where the electric field E\mathbf{E} or magnetic field B\mathbf{B} is measured.
  • Separation vector \bcR: The difference between the position vector and the source vector (origin vector).

There is no standard notation for the separation vector, and it differs widely. Some people do not designate a symbol and just write rr\mathbf{r} - \mathbf{r}^{\prime}. At the shrimp sushi restaurant, like in Griffiths’ electrodynamics, it’s denoted by the cursive rr(Kaufmann font) \bcR. Other characters used include the Greek letter eta η\eta. The magnitude and unit vector of the separation vector are as follows.

==rr \left| \bcR \right| = \cR = \left| \mathbf{r} - \mathbf{r}^{\prime} \right|

==rrrr \crH = \dfrac{\bcR}{\cR} = \dfrac{\mathbf{r} - \mathbf{r}^{\prime}}{ \left| \mathbf{r} - \mathbf{r}^{\prime} \right|}

In the Cartesian coordinate system, it looks as follows.

=(xx)x^+(yy)y^+(zz)z^ \bcR = (x-x^{\prime})\hat {\mathbf{x}} + (y-y^{\prime})\hat{\mathbf{y}} + (z-z^{\prime})\hat{\mathbf{z}} =(xx)2+(yy)2+(zz)2 \cR = \sqrt{ (x-x^{\prime})^2 + (y-y^{\prime})^2 + (z-z^{\prime})^2 } =(xx)x^+(yy)y^+(zz)z^(xx)2+(yy)2+(zz)2 \crH = \dfrac{ (x-x^{\prime})\hat {\mathbf{x}} + (y-y^{\prime})\hat{\mathbf{y}} + (z-z^{\prime})\hat{\mathbf{z}}}{\sqrt{ (x-x^{\prime})^2 + (y-y^{\prime})^2 + (z-z^{\prime})^2 }}

Example

Find the separation vector \bcR from the source point (2,8,7) to the observation point (4,6,8). Also, calculate its magnitude and unit vector.


=(4,6,8)(2,8,7)=(2,2,1)=2x^2y^+z^ \bcR=(4,6,8)-(2,8,7)=(2,-2,1)=2\hat{\mathbf{x}} -2\hat{\mathbf{y}}+\hat{\mathbf{z}}

=22+(2)2+12=4+4+1=9=3 \cR=\sqrt{ 2^2+ (-2)^2+1^2}=\sqrt{4+4+1}=\sqrt{9}=3

=(23,23,13)=23x^23y^+13z^ \crH=\left( \dfrac{2}{3}, - \dfrac{2}{3},\dfrac{1}{3} \right) = \dfrac{2}{3}\hat{\mathbf{x}} -\dfrac{2}{3}\hat{\mathbf{y}}+\dfrac{1}{3}\hat{\mathbf{z}}


  1. David J. Griffiths, Introduction to Electrodynamics (Translated by Jin-Seung Kim)(4th Edition). 2014, p9-10 ↩︎