logo

Homomorphism Preserves Basis 📂Topology

Homomorphism Preserves Basis

Theorem

Let’s suppose two topological spaces XX, YY and a homeomorphism ff between them are given. f : XY f\ :\ X \rightarrow Y If BX\mathcal{B}_{X} is called a basis of XX, then f(BX)f(\mathcal{B}_{X}) becomes a basis of YY.

Description

Simply put, a homeomorphic mapping preserves the basis.

Proof

A collection B\mathcal{B} of subsets of XX that satisfies the following two conditions is called a basis for the topology on XX:

  • (b1)(b1): For any xXx\in X, there exists a BBB \in \mathcal{B} satisfying xBx \in B. That is, BBB=X\bigcup \nolimits_{B\in\mathcal{B}} B=X
  • (b2)(b2): For any B1,B2BB_{1},B_2 \in \mathcal{B} and x(B1B2)x\in \big( B_{1} \cap B_2 \big), there exists a B3BB_{3} \in \mathcal{B} satisfying xB3(B1B2)x \in B_{3} \subset \big( B_{1} \cap B_2 \big).

It is necessary to check whether f(BX)f(\mathcal{B}_{X}) satisfies these two conditions in YY.


(b1)(b1)

Let’s consider BX={BX1, BX2, }\mathcal{B}_{X}=\left\{ B_{X}^1,\ B_{X}^2,\ \cdots \right\}. We need to show that f(BXk)=Y\bigcup f(B_{X}^k)=Y. Since ff is a homeomorphism, for any yYy \in Y, there exists a f1(y)f^{-1}(y). Then for each yy, there exists a BXkB_{X}^k satisfying f1(y)BXkf^{-1}(y) \in B_{X}^k. Furthermore, since f(iAi)=if(Ai)f(\bigcup\nolimits_{i} A_{i})=\bigcup\nolimits_{i} f(A_{i})1 f(BXk)=f(BXk)=f(X)=Y \bigcup f(B_{X}^k)=f( \bigcup B_{X}^k )=f(X)=Y


(b2)(b2)

Similarly, for any yy, there exists a f1(y)f^{-1}(y). By the definition of a basis, for f1(y)(BX1BX2)f^{-1}(y) \in \big( B_{X}^1 \cap B_{X}^2 \big), there exists a BX3B_{X}^3 satisfying the following condition: f1(y)BX3(BX1BX2) f^{-1}(y) \in B_{X}^3 \subset \big( B_{X}^1 \cap B_{X}^2 \big) Then yf(BX3)y \in f(B_{X}^3), and because ff is a bijection that preserves intersections2 f(BX3)f(BX1BX2)=f(BX1)f(BX2) f(B_{X}^3) \subset f\big( B_{X}^1 \cap B_{X}^2 \big)=f(B_{X}^1)\cap f(B_{X}^2) Therefore, there exists a f(BX3)f(B_{X}^3) satisfying yf(BX3)(f(BX1)f(BX2))y\in f(B_{X}^3)\subset \big( f(B_{X}^1) \cap f(B_{X}^2) \big). Thus, since f(BX)f(\mathcal{B}_{X}) satisfies the conditions (b1)(b1) and (b2)(b2), it is a basis for YY.


  1. [4]참고 ↩︎

  2. See [5] ↩︎