logo

Maximal Theorem 📂Measure Theory

Maximal Theorem

Theorem1

For every fLloc1f \in L^1_{\mathrm{loc}} and every α>0\alpha >0, there exists a constant C>0C>0 that satisfies the following condition.

μ({x : Hf(x)>α})Cαf(y)dy \mu \big( \left\{ x\ :\ Hf(x)>\alpha \right\}\big) \le \frac{C}{\alpha} \int |f(y)| dy

This inequality is called the Hardy-Littlewood maximal inequality.

The Hardy-Littlewood maximal function

Hf(x)=supr>0Arf(x)=supr>01μ(B(r,x))B(r,x)f(y)dy Hf (x) = \sup \limits_{r>0} A_{r} |f|(x) = \sup \limits_{r>0} \frac{1}{\mu \big( B(r,x) \big)}\int_{B(r,x)}|f(y)|dy

Proof

Let’s say Eα={x  Hf(x)>α}E_\alpha =\left\{ x\ |\ Hf(x) > \alpha \right\}. Then, by the definition of HfHf, we know that for some rr, Arf(x)>αA_{r} |f|(x) >\alpha holds. Let’s fix this rr and name it rxr_{x}. Now, let’s say B={B(rx,x)  xEα}\mathcal{B}=\left\{ B(r_{x},x)\ |\ x \in E_\alpha\right\}, U=BBBU=\bigcup \nolimits_{B\in \mathcal{B}} B. Then, UU is a cover of EαE_\alpha, therefore c<μ(Eα)μ(U) c < \mu (E_\alpha) \le \mu (U).

Maximal lemma

Let’s say B\mathcal{B} is a collection of open balls in Rn\mathbb{R}^n. Let’s say U=BBBU=\bigcup \limits_ { B\in \mathcal{B}} B. Then, for some c<m(U)c <m (U), there exists a finite number of disjoint BjBB_{j} \in \mathcal{B} that satisfy the following condition: j=1kμ(Bj)>3nc \sum \limits_ {j=1}^k \mu (B_{j}) >3^{-n} c

By the maximal lemma, for each x1,,xkXαx_{1},\cdots,x_{k} \in X_\alpha, there exists a finite number of open balls Bj=B(rxj,xj)B_{j}=B(r_{x_{j}},x_{j}) that satisfy the following equation:

1km(Bj)>13nc \sum \limits_{1}^k m (B_{j}) > \frac{1}{3^n}c

Now, let’s fix xjx_{j}. Then, the following holds:

Arxjf(xj)=1m(Bj)Bjf(y)dy>α    m(Bj)<1αBjf(y)dy A_{r_{x_{j}}}|f|(x_{j})=\frac{1}{m(B_{j})}\int_{B_{j}} |f|(y)dy >\alpha \\ \implies m (B_{j}) < \frac{1}{\alpha} \int_{B_{j}}|f|(y)dy

Therefore, we obtain the following:

c<3n1km(Bj)3nα1kBjf(y)dy3nαRnf(y)dy=3nαfL1 \begin{align*} c < 3^n \sum \limits_{1}^k m (B_{j}) &\le \frac{3^n}{\alpha} \sum\limits_{1}^k \int_ {B_{j}} |f(y)|dy \\ &\le \frac{3^n}{\alpha}\int_{\mathbb{R}^n}|f(y)|dy \\ &= \frac{3^n}{\alpha} | f|_{L^1} \end{align*}

Taking the limit cm(Eα)c \nearrow m (E_\alpha) completes the proof.


  1. Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications (2nd Edition, 1999), p96 ↩︎