logo

Separated Union Topological Space 📂Topology

Separated Union Topological Space

Definition

Let {Xα}αA\left\{ X_\alpha \right\}_{\alpha \in A} be an arbitrary topological space index family. Let us say uαAXαu \subset \bigsqcup \limits_{\alpha \in A} X_\alpha. Then, for all αA\alpha \in A, if uXαu \cap X_\alpha is an open set in Xα X_\alpha, then uu is said to be an open set ^{\ast} in αAXα\bigsqcup \limits_{\alpha \in A} X_\alpha.


  • The so-called open^{\ast} here is not exactly open in the sense of topology. However, by collecting subsets uu that satisfy such conditions, one can verify that it actually becomes a topology of αAXα\bigsqcup \limits_{\alpha \in A}X_\alpha. Thus, it is called open.

Theorem

The Disjoint Union as a Topology

Let T\mathcal{T} be a collection of open^{\ast} subsets in αAXα\bigsqcup \limits_{\alpha \in A}X_\alpha. And let Tα\mathcal{T}_\alpha be the topology of XαX_\alpha.

  • (0)(0): Then T\mathcal{T} is the topology of αAXα\bigsqcup \limits_{\alpha \in A}X_\alpha and this is called the disjoint union topology.

Properties of the Disjoint Union Topology

Let αAXα\bigsqcup \limits_{\alpha \in A} X_\alpha be a disjoint union topological space. Then

  • (a)(a): Let YY be any topological space. Then, it is equivalent that f : αAXαYf\ :\ \bigsqcup \limits_{\alpha \in A} X_\alpha \rightarrow Y is continuous and both  βA\forall\ \beta\in A, fι : XβYf\circ \iota\ :\ X_\beta \rightarrow Y are continuous.
  • (b)(b): The disjoint union topology is the unique topology on αAXα\bigsqcup \limits_{\alpha \in A} X_\alpha that satisfies (a)(a).
  • (c)(c): A subset FαAXαF \subset \bigsqcup \limits_{\alpha \in A} X_\alpha being a closed set is equivalent to FXαF\cap X_\alpha being a closed set in XαX_\alpha for all αA\alpha \in A.

Proof

(0)(0)

Strategy: The proof directly confirms whether it satisfies the three conditions to be a topology.


(1)(1)

For ,αAXα\varnothing, \bigsqcup \limits_{\alpha \in A}X_\alpha and all αA\alpha \in A, we have Xα=Tα(αAXα)Xα=XαTα \varnothing \cap X_\alpha=\varnothing \in \mathcal{T}_\alpha \\ \left( \bigsqcup \limits_{\alpha \in A}X_\alpha \right) \cap X_\alpha=X_\alpha \in \mathcal{T}_\alpha therefore ,αAXαT \varnothing, \bigsqcup \limits_{\alpha \in A}X_\alpha \in \mathcal{T}


(2)(2)

Let us denote uiT, iNu_{i} \in \mathcal{T},\quad \forall\ i\in \mathbb{N}. Then, by definition, we have uiXαTα, iN u_{i}\cap X_\alpha \in \mathcal{T}_\alpha,\quad \forall\ i\in \mathbb{N} However, (i=1ui)Xα=i=1(uiXα) \left( \bigcup \limits_{i=1}^\infty u_{i}\right)\cap X_\alpha=\bigcup \limits_{i=1}^\infty \left( u_{i} \cap X_\alpha \right) and since the countable union of open sets is an open set, (i=1ui)XαTα \left( \bigcup \limits_{i=1}^\infty u_{i} \right) \cap X_\alpha \in \mathcal{T}_\alpha thus i=1 uiT \bigcup \limits_{i=1}^\infty\ u_{i} \in \mathcal {T}


(3)(3)

Let us denote u1,u2Tu_{1}, u_2 \in \mathcal{T}. Then, by definition, we have uiXαTα,i=1,2 u_{i}\cap X_\alpha \in \mathcal{T}_\alpha,\quad i=1,2 However, (u1u2)Xα=u1u2XαXα=(u1Xα)(u2Xα) (u_{1} \cap u_2)\cap X_\alpha=u_{1}\cap u_2\cap X_\alpha \cap X_\alpha=\left( u_{1}\cap X_\alpha \right) \cap \left(u_2\cap X_\alpha \right) and since the intersection of open sets is also an open set, (u1u2)XαTα \left( u_{1} \cap u_2 \right) \cap X_\alpha \in \mathcal{T}_\alpha thus u1u2T u_{1}\cap u_2 \in \mathcal {T}