logo

Conditional Properties of Probability 📂Probability Theory

Conditional Properties of Probability

Theorem

Let’s say we have a probability space (Ω,F,P)( \Omega , \mathcal{F} , P) and a sub-sigma field GF\mathcal{G} \subset \mathcal{F}.

  • [1] For all BGB \in \mathcal{G}, there is 0P(BG)10 \le P(B | \mathcal{G}) \le 1.
  • [2] Continuity of probability: For a nested sequence {Bn}nNG\left\{ B_{n} \right\}_{n \in \mathbb{N}} \subset \mathcal{G}, limnBn=B    P(BnG)P(BG) a.s. \lim_{n \to \infty} B_{n} = B \implies P ( B_{n} | \mathcal{G} ) \to P ( B | \mathcal{G} ) \text{ a.s.}
  • [3] If {Bn}nN\left\{ B_{n} \right\}_{n \in \mathbb{N}} is a partition of Ω\Omega, P(nNBnG)=nNP(BnG) P \left( \bigsqcup_{n \in \mathbb{N}} B_{n} | \mathcal{G} \right)= \sum_{n \in \mathbb{N}} P \left( B_{n} | \mathcal{G} \right)

  • That a sequence of events {Bn}nNG\left\{ B_{n} \right\}_{n \in \mathbb{N}} \subset \mathcal{G} is nested means it has one of the following two properties. nN,BnBn+1    BnBn+1nN,BnBn1    BnBn1 \forall n \in \mathbb{N}, B_{n} \subset B_{n+1} \iff B_{n} \subset B_{n+1} \subset \cdots \\ \forall n \in \mathbb{N}, B_{n} \subset B_{n-1} \iff B_{n} \subset B_{n-1} \subset \cdots
  • A nested sequence may have the following properties for some event BGB \in \mathcal{G}. nN,BnBn+1nNBn=B    limnBn=BnN,BnBn1nNBn=B    limnBn=B \forall n \in \mathbb{N}, B_{n} \subset B_{n+1} \land \bigcup_{n \in \mathbb{N}} B_{n} = B \implies \lim_{n \to \infty} B_{n} = B \\ \forall n \in \mathbb{N}, B_{n} \subset B_{n-1} \land \bigcap_{n \in \mathbb{N}} B_{n} = B \implies \lim_{n \to \infty} B_{n} = B
  • \bigsqcup denotes the symbol for the union of mutually exclusive sets.

Proof

[1]

Since PP is a probability, according to the definition of conditional probability and conditional expectation, for all AGA \in \mathcal{G} A0dPAP(BG)dP=AE(1BG)dP=A1BdPA1dP \begin{align*} \int_{A} 0 dP \le & \int_{A} P(B | \mathcal{G}) dP \\ =& \int_{A} E ( \mathbb{1}_{B} | \mathcal{G} ) dP \\ =& \int_{A} \mathbb{1}_{B} dP \\ \le & \int_{A} 1 dP \end{align*} AF,Afdm=0    f=0 a.e.\displaystyle \forall A \in \mathcal{F}, \int_{A} f dm = 0 \iff f = 0 \text{ a.e.} hence 0P(BG)10 \le P(B | \mathcal{G}) \le 1

[2]

We only need to show that it holds when nN,BnBn+1\forall n \in \mathbb{N}, B_{n} \subset B_{n+1}, by setting it as Bn:=ΩAnB_{n} := \Omega \setminus A_{n}, we can also show it holds when nN,AnAn1\forall n \in \mathbb{N}, A_{n} \subset A_{n-1}. Assuming nN,BnBn+1\forall n \in \mathbb{N}, B_{n} \subset B_{n+1}, according to the definition of conditional probability and the Monotone Convergence Theorem for conditional probability, limnNP(BnG)=limnE(1BnG)=E(limn1BnG)=E(1BG)=P(BG) \begin{align*} \lim_{n \to \mathbb{N}} P(B_{n} | \mathcal{G}) \color{red}{=}& \lim_{n \to \infty} E ( \mathbb{1}_{B_{n}} | \mathcal{G} ) \\ \color{blue}{=}& E \left( \lim_{n \to \infty} \mathbb{1}_{B_{n}} | \mathcal{G} \right) \\ =& E \left( \mathbb{1}_{B} | \mathcal{G} \right) \\ \color{red}{=}& P(B | \mathcal{G} ) \end{align*}

[3]

If {Bn}nN\left\{ B_{n} \right\}_{n \in \mathbb{N}} is a partition of Ω\Omega, then for all nNn \in \mathbb{N}, k=1nBkk=1n+1Bk\displaystyle \bigsqcup_{k=1}^{n} B_{k} \subset \bigsqcup_{k=1}^{n+1} B_{k} hence, according to the continuity of probability in [2], P(n=1BnG)=P(limnk=1nBkG)=limnP(k=1nBkG)=limnE(1k=1nBkG)=limnk=1nE(1BkG)=limnk=1nP(BkG)=n=1P(BnG) \begin{align*} P \left( \bigsqcup_{n=1}^{\infty} B_{n} | \mathcal{G} \right) =& P \left( \lim_{n \to \infty} \bigsqcup_{k=1}^{n} B_{k} | \mathcal{G} \right) \\ =& \lim_{n \to \infty} P \left( \bigsqcup_{k=1}^{n} B_{k} | \mathcal{G} \right) \\ =& \lim_{n \to \infty} E \left( \mathbb{1}_{\bigsqcup_{k=1}^{n} B_{k}} | \mathcal{G} \right) \\ =& \lim_{n \to \infty} \sum_{k=1}^{n} E \left( \mathbb{1}_{B_{k}} | \mathcal{G} \right) \\ =& \lim_{n \to \infty} \sum_{k=1}^{n} P \left( B_{k} | \mathcal{G} \right) \\ =& \sum_{n=1}^{\infty} P \left( B_{n} | \mathcal{G} \right) \end{align*}