logo

Uniform C^m-Regularity Condition

Uniform C^m-Regularity Condition

Definition1

If there exists a locally finite open cover {Uj}\left\{ U_{j} \right\} of bdryΩ\mathrm{bdry}\Omega, and a sequence {Φj}\left\{ \Phi_{j} \right\} of mm-smooth transformations taking UjU_{j} onto the ball B={yRn:y<1}B=\left\{ y\in \mathbb{R}^n : |y| \lt 1 \right\}, with an inverse transformation Ψj=Φj1\Psi _{j}=\Phi_{j}^{-1} existing and satisfying (i)\text{(i)} ~ (iv)\text{(iv)}, then the open set ΩRn\Omega \subset \mathbb{R}^n satisfies the uniform CmC^{m}-regularity condition.

(i)\text{(i)} For any δ>0\delta >0, Ω<δ\Omega_{<\delta}j=1Ψ({yRn:y<12})\subset \bigcup \nolimits_{j=1}^\infty \Psi \Big( \left\{y\in \mathbb{R}^n : |y| \lt \frac{1}{2} \right\} \Big) is true.

(ii)\text{(ii)} For each jj, Φj(UjΩ)={yB:yn>0}\Phi_{j}(U_{j} \cap \Omega )=\left\{ y \in B : y_{n} \gt 0 \right\}

(iii)\text{(iii)} If (ϕj,1,,ϕj,n)(\phi_{j,1}, \dots, \phi_{j,n}) and (ψj,1,,ψj,n)(\psi_{j,1}, \dots, \psi_{j,n}) are components of Φj\Phi_{j} and Ψj\Psi_{j}, respectively, then for all α\alpha, 1in1\le i \le n, and each jj, there exists a positive constant MM that satisfies the following condition:

Dαϕj,i(x)M,xUjDαψj,i(y)M,yB | D^{\alpha} \phi_{j,i}(x) | \le M,\quad x\in U_{j} \\ | D^{\alpha} \psi_{j,i}(y) | \le M,\quad y\in B

(iv)\text{(iv)} There exists some positive constant RR such that every collection of R+1R+1 sets of UjU_{j} has an empty intersection.


  1. Robert A. Adams and John J. F. Foutnier, Sobolev Space (2nd Edition, 2003), p84 ↩︎