logo

Radon-Nikodym Derivative 📂Measure Theory

Radon-Nikodym Derivative

Theorem 1

Assuming a measurable space (Ω,F)( \Omega , \mathcal{F} ) is given with measures μ\mu, ν\nu satisfying μ(Ω)=1\mu ( \Omega ) = 1 for all FFF \in \mathcal{F} and 0ν(F)μ(F)0 \le \nu (F) \le \mu (F), there exists a F\mathcal{F}-measurable function h:ΩRh : \Omega \to \mathbb{R} for all FFF \in \mathcal{F} that satisfies ν(F)=Fhdμ \nu (F) = \int_{F} h d \mu This hh, denoted as h:=dνdμ\displaystyle h := {{d \nu } \over {d \mu }}, is called the Radon-Nikodym derivative of ν\nu with respect to μ\mu.


  • A function ff being a F\mathcal{F}-measurable function means it satisfies f1(B)Ff^{-1} (B) \in \mathcal{F} for all Borel sets BB(Ω)B \in \mathcal{B} ( \Omega ).

Explanation

Under the premise of the theorem that μ(Ω)=1\mu ( \Omega ) = 1, Ω\Omega can become a probability space (Ω,F,μ)( \Omega , \mathcal{F} , \mu ).

The naming of the Radon-Nikodym derivative is quite intuitive, even if putting the exact argument aside for a moment and dealing with it as it appears might unfold like so. Unlike differentiation in basic analysis, it’s a matter of fitting concepts to forms. Fhdμ=Fdνdμdμ=Fdν=ν(F) \begin{align*} \int_{F} h d \mu =& \int_{F} {{d \nu } \over {d \mu }} d \mu \\ =& \int_{F} d \nu \\ =& \nu ( F) \end{align*}

The Radon-Nikodym theorem guarantees the unique existence of such Radon-Nikodym derivatives under a few more given conditions.

Proof

Part 1. hP=νμ\displaystyle h_{\mathcal{P}} = {{\nu} \over {\mu}}

Let’s define hP:ΩRh_{\mathcal{P}} : \Omega \to \mathbb{R} for partitions P:={A1,,Ak} \mathcal{P} := \left\{ A_{1} , \cdots , A_{k} \right\} and ωAi\omega \in A_{i} as follows. hP(ω)={ν(Ai)μ(Ai),μ(Ai)>00,otherwise h_{\mathcal{P}} ( \omega ) = \begin{cases} \displaystyle {{\nu (A_{i} ) } \over {\mu (A_{i} ) }} &, \mu ( A_{i} ) > 0 \\ 0 &, \text{otherwise} \end{cases} Given AiA_{i}, according to the definition, ωAi\omega \in A_{i} can be treated as a constant function hP(ω)=cih_{\mathcal{P}} ( \omega ) = c_{i} regardless. Accordingly, AihPdμ=Aiν(Ai)μ(Ai)dμ=ν(Ai)1μ(Ai)Aidμ=ν(Ai)1μ(Ai)μ(Ai)=ν(Ai) \begin{align*} \int_{A_{i}} h_{\mathcal{P}} d \mu =& \int_{A_{i}} {{\nu (A_{i} ) } \over {\mu (A_{i} ) }} d \mu \\ =& \nu (A_{i} ) {{1 } \over {\mu (A_{i} ) }} \int_{A_{i}} d \mu \\ =& \nu (A_{i} ) {{1 } \over {\mu (A_{i} ) }} \mu ( A_{i} ) \\ =& \nu (A_{i} ) \end{align*} Let’s prove the following corollaries.

  • Part 1-1.
    For all P\mathcal{P} of Ω\Omega and for all ωΩ\omega \in \Omega, since 0hP10 \le h_{\mathcal{P}} \le 1 for all FFF \in \mathcal{F} satisfies 0ν(F)μ(F)0 \le \nu (F) \le \mu (F), 0hP=ν(F)μ(F)1\displaystyle 0 \le h_{\mathcal{P}} = {{\nu (F)} \over {\mu (F)}} \le 1
  • Part 1-2.
    A=jJAj    ν(A)=AhPdμA = \bigsqcup_{j \in J} A_{j} \implies \nu (A) = \int_{A} h_{\mathcal{P}} d \mu \bigsqcup is a disjoint union and J{1,,k}J \subset \left\{ 1 , \cdots, k \right\} is the set of indices. By the properties of measure, ν(A)=jJν(Aj)=jJAjhPdμ=AhPdμ \begin{align*} \nu (A) =& \sum_{j \in J} \nu ( A_{j} ) \\ =& \sum_{j \in J} \int_{A_{j}} h_{\mathcal{P}} d \mu \\ =& \int_{A} h_{\mathcal{P}} d \mu \end{align*} Meanwhile, since ΩF\Omega \in \mathcal{F} by the definition of the sigma field, naturally ν(Ω)=ΩhPdμ\displaystyle \nu ( \Omega ) = \int_{ \Omega } h_{\mathcal{P}} d \mu holds true.
  • Part 1-3.
    • Part 1-3-1. For all AP1A \in \mathcal{P}_{1}, Ah1dμ=Ah2dμ\displaystyle \int_{A} h_{1} d \mu = \int_{A} h_{2} d \mu holds true.
      Let’s say P2\mathcal{P}_{2} is a refinement of P1\mathcal{P}_{1}, and for convenience, denote it as hn:=hPnh_{n} := h_{\mathcal{P}_{n}}. By the definition of refinement, there exist BjP2B_{j} \in \mathcal{P}_{2} that satisfy A=jJBj\displaystyle A = \bigsqcup_{j \in J} B_{j} for all AP1A \in \mathcal{P}_{1}. Therefore, Ah1dμ=ν(A)=jJν(Bj)=jJBjh2dμ=Ah2dμ \begin{align*} \int_{A} h_{1} d \mu =& \nu (A) \\ =& \sum_{j \in J} \nu ( B_{j} ) \\ =& \sum_{j \in J} \int_{B_{j}} h_{2} d \mu \\ =& \int_{A} h_{2} d \mu \end{align*}
    • Part 1-3-2. For all AP1A \in \mathcal{P}_{1}, Ah1h2dμ=Ah12dμ\displaystyle \int_{A} h_{1} h_{2} d \mu = \int_{A} h_{1}^{2} d \mu holds true. Ah1h2dμ=ν(A)μ(A)Ah2dμ=ν(A)μ(A)ν(A)=A[ν(A)μ(A)]2dμ=Ah12dμ\begin{align*} \int_{A} h_{1} h_{2} d \mu =& {{\nu (A ) } \over {\mu (A ) }} \int_{A} h_{2} d \mu \\ =& {{\nu (A ) } \over {\mu (A ) }} \nu (A ) \\ =& \int_{A} \left[ {{\nu (A ) } \over {\mu (A ) }} \right]^2 d \mu \\ =& \int_{A} h_{1}^{2} d \mu \end{align*}
  • Part 1-4.
    • Part 1-4-1. A(h2h1)2dμ=A[h22h12]dμ\displaystyle \int_{A} ( h_{2} - h_{1} )^2 d \mu = \int_{A} \left[ h_{2}^{2} - h_{1}^{2} \right] d \mu
      According to Part 1-3-2, for all AP1A \in \mathcal{P}_{1}, Ah1(h2h1)dμ=0\displaystyle \int_{A} h_{1} ( h_{2} - h_{1} ) d \mu = 0 holds true, and according to Part 1-2, Ωh1(h2h1)dμ=0\displaystyle \int_{ \Omega } h_{1} ( h_{2} - h_{1} ) d \mu = 0 also stands. Thus, A(h2h1)2dμ=A(h222h2h1+h12)dμ=A[h222h1(h2h1)h12]dμ=A[h22h12]dμ \begin{align*} \int_{A} ( h_{2} - h_{1} )^2 d \mu =& \int_{A} \left( h_{2}^{2} - 2 h_{2} h_{1} + h_{1}^{2} \right) d \mu \\ =& \int_{A} \left[ h_{2}^{2} - 2 h_{1} (h_{2} - h_{1}) - h_{1}^{2} \right] d \mu \\ =& \int_{A} \left[ h_{2}^{2} - h_{1}^{2} \right] d \mu \end{align*}
    • Part 1-4-2. Ωh12dμΩh22dμ\displaystyle \int_{\Omega} h_{1}^{2} d \mu \le \int_{\Omega} h_{2}^{2} d \mu
      Ωh22dμ=Ωh12dμ+Ω(h2h1)2dμΩh12dμ\begin{align*} \int_{\Omega} h_{2}^{2} d \mu =& \int_{\Omega} h_{1}^{2} d \mu + \int_{\Omega} (h_{2} - h_{1})^{2} d \mu \\ \ge& \int_{\Omega} h_{1}^{2} d \mu \end{align*}

Part 2. h:=limnhQn\displaystyle h := \lim_{n \to \infty} h_{\mathcal{Q}_{n}}

In Part 1-4-2, it was confirmed that ΩhP2dμΩhP2dμ\displaystyle \int_{\Omega} h_{\mathcal{P}}^{2} d \mu \le \int_{\Omega} h_{\mathcal{P} ' }^{2} d \mu holds for the refinement P\mathcal{P} ' of P\mathcal{P}. Moreover, since 0hP10 \le h_{\mathcal{P}} \le 1 in Part 1-1 and the assumption was μ(Ω)=1\mu ( \Omega ) = 1, c:=supΩhP2dμc := \sup \int_{\Omega} h_{\mathcal{P}}^{2} d \mu exists between 00 and 11. [ NOTE: In fact, even if it’s μ(Ω)1\mu ( \Omega ) \ne 1, it can be substituted as μ:=μ/μ(Ω)\mu ' := \mu / \mu ( \Omega). ] Now consider a partition Qn\mathcal{Q}_{n} that becomes a refinement of both given nNn \in \mathbb{N} against ΩhPn2dμ>c14n\displaystyle \int_{\Omega} h_{\mathcal{P}_{n}}^{2} d \mu > c - {{1} \over {4^{n}}}. Naturally, Qn+1\mathcal{Q}_{n+1} is a refinement of Qn\mathcal{Q}_{n} and satisfies the following inequality. c14nΩhPn2dμΩhQn2dμΩhQn+12dμc c - {{1} \over {4^{n}}} \le \int_{\Omega} h_{\mathcal{P}_{n}}^{2} d \mu \le \int_{\Omega} h_{\mathcal{Q}_{n}}^{2} d \mu \le \int_{\Omega} h_{\mathcal{Q}_{n+1}}^{2} d \mu \le c According to Part 1-4-1, since the square 2^2 can enter into the parenthesis, Ω(hQn+1hQn)2dμ=Ω(hQn+12hQn2)dμ<14n \int_{\Omega} \left( h_{\mathcal{Q}_{n+1}} - h_{\mathcal{Q}_{n}} \right)^{2} d \mu = \int_{\Omega} \left( h_{\mathcal{Q}_{n+1}}^{2} - h_{\mathcal{Q}_{n}}^{2} \right) d \mu < {{1} \over {4^{n}}}

Cauchy-Schwarz Inequality: If f,gL2(E)f,g \in \mathcal{L}^{2} (E), then fgL1(E)fg \in L^{1}(E), and Efgdmfg1f2g2 \left\| \int_{E} f \overline{g} dm \right\| \le \left\| f g \right\|_{1} \le \left\| f \right\|_{2} \left\| g \right\|_{2}

Setting f=hQn+1hQnf = | h_{\mathcal{Q}_{n+1}} - h_{\mathcal{Q}_{n}} |, g=1g = 1 in the Cauchy-Schwarz inequality, for all nNn \in \mathbb{N}, ΩhQn+1hQndμΩ(hQn+1hQn)2dμΩ1dμ=Ω(hQn+12hQn2)dμμ(Ω)<12n1 \begin{align*} \int_{\Omega} \left| h_{\mathcal{Q}_{n+1}} - h_{\mathcal{Q}_{n}} \right| d \mu \le & \sqrt{ \int_{\Omega} \left( h_{\mathcal{Q}_{n+1}} - h_{\mathcal{Q}_{n}} \right)^{2} d \mu } \sqrt{ \int_{\Omega} 1 d \mu } \\ =& \sqrt{\int_{\Omega} \left( h_{\mathcal{Q}_{n+1}}^{2} - h_{\mathcal{Q}_{n}}^{2} \right) d \mu} \sqrt{ \mu ( \Omega ) } \\ <& {{1} \over {2^{n}}} \cdot 1 \end{align*}

Levi’s Theorem: If k=1fkdm<\displaystyle \sum_{k=1}^{\infty} \int |f_{k}| dm < \infty, then k=1fk(x)\displaystyle \sum_{k=1}^{\infty} f_{k} (x) converges almost everywhere and k=1fkdm=k=1fkdm \int \sum_{k=1}^{\infty} f_{k} dm = \sum_{k=1}^{\infty} \int f_{k} dm

Since nNΩhQn+1hQndμ<\displaystyle \sum_{n \in \mathbb{N}} \int_{\Omega} \left| h_{\mathcal{Q}_{n+1}} - h_{\mathcal{Q}_{n}} \right| d \mu < \infty, by Levi’s theorem, nN(hQn+1hQn)=limnhQnhQ1 \sum_{n \in \mathbb{N}} \left( h_{\mathcal{Q}_{n+1}} - h_{\mathcal{Q}_{n}} \right) = \lim_{n \to \infty} h_{\mathcal{Q}_{n}} - h_{\mathcal{Q}_{1}} converges almost everywhere with respect to μ\mu. Now let’s define hh as follows. h:=hQ1+nN(hQn+1hQn)=limnhQn h := h_{\mathcal{Q}_{1}} + \sum_{n \in \mathbb{N}} \left( h_{\mathcal{Q}_{n+1}} - h_{\mathcal{Q}_{n}} \right) = \lim_{n \to \infty} h_{\mathcal{Q}_{n}}


Part 3. ν(F)=Fhdμ\displaystyle \nu (F) = \int_{F} h d \mu

By the definition of hh, 0h10 \le h \le 1 is F\mathcal{F}-measurable. Now it suffices to show that ν(F)=Fhdμ\displaystyle \nu (F) = \int_{F} h d \mu for all FFF \in \mathcal{F}. Fix one FFF \in \mathcal{F} and define Rn\mathcal{R}_{n} as a common refinement partition of Qn\mathcal{Q}_{n} and {F,Fc}\left\{ F , F^{c} \right\}. Then, according to A=jJAj    ν(A)=AhPdμ\displaystyle A = \bigsqcup_{j \in J} A_{j} \implies \nu (A) = \int_{A} h_{\mathcal{P}} d \mu shown in Part 1-2, for all nNn \in \mathbb{N}, ν(F)=FhRndμ=F(hRnhQn)dμ+FhQndμ \begin{align*} \nu (F) =& \int_{F} h_{ \mathcal{R}_{n} } d \mu \\ =& \int_{F} ( h_{ \mathcal{R}_{n} } - h_{ \mathcal{Q}_{n} } )d \mu + \int_{F} h_{ \mathcal{Q}_{n} } d \mu \end{align*} is satisfied. Meanwhile, using the Cauchy-Schwarz inequality for Rn\mathcal{R}_{n} as in Part 2, we can derive ΩhRnhQndμ<12n\displaystyle \left| \int_{\Omega} h_{\mathcal{R}_{n}} - h_{\mathcal{Q}_{n}} d \mu \right| < {{1} \over {2^{n}}}, thus ν(F)=0+limnFhQndμ \nu (F) =0 + \lim_{n \to \infty} \int_{F} h_{ \mathcal{Q}_{n} } d \mu

Dominated Convergence Theorem: For measurable sets EME \in \mathcal{M} and gL1(E)g \in \mathcal{L}^{1} (E), suppose a sequence of measurable functions {fn}\left\{ f_{n} \right\} satisfies fng|f_{n}| \le g almost everywhere on EE. If almost everywhere on EE, f=limnfn\displaystyle f = \lim_{n \to \infty} f_{n} holds, then fL1(E)f \in \mathcal{L}^{1}(E) and limnEfn(x)dm=Efdm \lim_{ n \to \infty} \int_{E} f_{n} (x) dm = \int_{E} f dm

Since 0hQn10 \le h_{\mathcal{Q}_{n}} \le 1 for all nNn \in \mathbb{N} and hh was defined as such in Part 2, by the Dominated Convergence Theorem, ν(F)=limnFhQndμ=Fhdμ \begin{align*} \nu (F) =& \lim_{n \to \infty} \int_{F} h_{ \mathcal{Q}_{n} } d \mu \\ =& \int_{F} h d \mu \end{align*}

Meanwhile, from Part 1~2 of the proof above, we derive the following corollary.

Corollary

If for all nNn \in \mathbb{N}, Qn+1\mathcal{Q}_{n+1} is a refinement of Qn\mathcal{Q}_{n}, limnhQn=limnνμ=dνdμ \lim_{n \to \infty} h_{\mathcal{Q}_{n}} = \lim_{n \to \infty} {{\nu} \over {\mu}} = {{d \nu } \over {d \mu }}


  1. Folland. (1999). Real Analysis: Modern Techniques and Their Applications(2nd Edition): p91. ↩︎