logo

Locally Finite Covers

Locally Finite Covers

Definition1

English

An open cover O\mathcal{O} of a set SRnS \subset \mathbb{R}^n is said to be locally finite if any compact set in Rn\mathbb{R}^n can intersect at most finitely many members of O\mathcal{O}.

Explanation

Even an infinite cover can be locally finite. By definition, a locally finite cover is at most countable, and a finite set is naturally locally finite. Furthermore, if SS is closed, then any open cover of a uniformly bounded SS has a locally finite subcover.


  1. Robert A. Adams and John J. F. Foutnier, Sobolev Space (2nd Edition, 2003), p82 ↩︎