logo

Gradient of Time Delay 📂Electrodynamics

Gradient of Time Delay

Overview

The gradient of time delay is as follows.

tr=1c \nabla t_{r}=-\frac{1}{c} \crH

Proof

2.png

Given =c(ttr)\acR = c(t -t_{r}) and since tt is independent of spatial variables,

=(ctr)=ctr \nabla \cR =\nabla(-c t_{r})=-c \nabla t_{r}

Therefore, the gradient of time delay can be computed by calculating \nabla \cR.

==12()=12()=12[×(×)+×(×)+()+()]=1[×(×)+()] \begin{align} \nabla \cR &= \nabla \sqrt{\bcR \cdot \bcR} \nonumber \\ &= \frac{1}{2\sqrt{\bcR\cdot \bcR}} \nabla (\bcR \cdot \bcR ) \nonumber \\ &= \frac{1}{2\cR} \nabla (\bcR \cdot \bcR ) \nonumber \\ &= \frac{1}{2\cR} \Big[ \bcR \times (\nabla \times \bcR ) + \bcR \times (\nabla \times \bcR) + (\bcR \cdot \nabla)\bcR +(\bcR \cdot \nabla)\bcR\Big] \nonumber \\ &= \frac{1}{\cR} \Big[\bcR\times (\nabla \times \bcR) + (\bcR \cdot \nabla) \bcR \Big] \end{align}

The fourth equality holds due to the Product Rule (b). Now proceeding with the remaining calculations one by one,

  • Part 1. ()(\bcR \cdot \nabla)\bcR

()=()r()w=v(tr) \begin{align*} (\bcR \cdot \nabla ) \bcR &= (\bcR \cdot \nabla ) \mathbf{r} - ( \bcR \cdot \nabla) \mathbf{w} \\ &= \bcR - \mathbf{v} ( \bcR \cdot \nabla t_{r}) \end{align*}

The second equality holds because for any vector A\mathbf{A}, (A)r=A(\mathbf{A} \cdot \nabla )\mathbf{r}=\mathbf{A}1 and ()A=Atr(tr)(\abcR \cdot \nabla)\mathbf{A}=\dfrac{\partial \mathbf{A} }{\partial t_{r}}(\abcR \cdot \nabla t_{r})2 makes ()r=(\bcR \cdot \nabla )\mathbf{r}=\bcR and ()w=v(tr)( \bcR \cdot \nabla ) \mathbf{w} = \mathbf{v}(\bcR \cdot \nabla t_{r}) true.

  • Part 2. ×\nabla \times \bcR

×=×r×w=×w=(v×tr)=v×tr \begin{align*} \nabla \times \bcR &= \nabla \times \mathbf{r} -\nabla \times \mathbf{w} \\ &= -\nabla \times \mathbf{w} \\ &= -(- \mathbf{v} \times \nabla t_{r} ) \\ &= \mathbf{v} \times \nabla t_{r} \end{align*}

The second equality is valid because of ×r=0\nabla \times \mathbf{r}=0. Each component of r\mathbf{r} is independent of the other components, which is a matter of course. If you are not sure what this means, set it to r=xx^+yy^+zz^\mathbf{r}=x\hat{\mathbf{x}}+y\hat{\mathbf{y}}+z\hat{\mathbf{z}} and calculate it directly. The third equality holds because for any vector A\mathbf{A}, ×A=At×tr\nabla \times \mathbf{A} = -\frac{\partial \mathbf{A}}{\partial t} \times \nabla t_{r}3 makes ×w=v×tr\nabla \times \mathbf{w}=-\mathbf{v}\times\nabla t_{r} true.

  • Part 3. Conclusion

Therefore, substituting these two results into (1)(1) gives

=1[v(tr)+×(v×tr)]=1[v(tr)+v(tr)tr(v)]=1[tr(v)] \begin{align*} \nabla \cR &= \frac{1}{\cR} \Big[ \bcR -\mathbf{v}(\bcR \cdot \nabla t_{r}) + \bcR \times (\mathbf{v} \times \nabla t_{r}) \Big] \\ &= \frac{1}{\cR} \Big[ \bcR -\mathbf{v}(\bcR \cdot \nabla t_{r}) + \mathbf{v}(\bcR \cdot \nabla t_{r})-\nabla t_{r}(\bcR \cdot \mathbf{v}) \Big] \\ &= \frac{1}{\cR} \Big[ \bcR -\nabla t_{r} (\bcR \cdot \mathbf{v} )\Big] \end{align*}

The second equality is justified by the BAC-CAB formula. To summarize,

ctr==1[tr(v)]    tr(v)=tr    tr=c(v) \begin{align*} && -c \nabla t_{r} = \nabla \cR &= \frac{1}{\cR} \Big[ \bcR -\nabla t_{r} (\bcR \cdot \mathbf{v} )\big] \\ \implies && \bcR - \nabla t_{r}(\bcR \cdot \mathbf{v}) &= -\cR \nabla t_{r} \\ \implies && \nabla t_{r} &= \frac{-\bcR}{\cR c - (\bcR \cdot \mathbf{v})} \end{align*}

This is a general result that also applies when the charges are stationary. Since tr=tct_{r}=t-\frac{\cR}{c},

tr=c=1c \nabla t_{r} = -\nabla \frac{\cR}{c}=-\frac{1}{c} \nabla \cR

And since =\nabla \acR = \acrH,

tr=1c \nabla t_{r}=-\frac{1}{c} \crH

By substituting v=0\mathbf{v}=\mathbf{0} into the above result, it is equivalent.


  1. 두 번째 항 참고 ↩︎

  2. 첫 번째 항 참고 ↩︎

  3. Refer to the third term ↩︎