Moving Point Charges and the Electric Fields They Create
📂ElectrodynamicsMoving Point Charges and the Electric Fields They Create
Overview

The electromagnetic field created by a moving point charge is as follows.
E(r,t)B(r,t)=4πϵ0q(
⋅u)3
[(c2−v2)u+
×(u×a)]=c1
×E(r,t)
Description
An introduction to the induction process for electric fields.
Induction
The electric and magnetic fields created by a moving point charge can be obtained using the Liénard-Wiechert potentials.
V(r,t)=4πϵ01(
c−
⋅v)qc,A(r,t)=c2vV(r,t)
Additionally, the electromagnetic field can be obtained by the following equation.
E=−∇V−∂t∂A,B=∇×A
Let’s derive ∇V and ∂t∂A in turn. First, if we calculate ∇V,
∇V=4πϵ0qc∇(
c−
⋅v)1
Since dxd(f(x)1)=[f(x)]2−1f′(x),
∇V=4πϵ0qc(
c−
⋅v)2−1∇(
c−
⋅v)
Therefore, we shall calculate ∇
and ∇(
⋅v). First, if ∇(
⋅v) is calculated according to Multiplication Rule 2,
∇(
⋅v)=(
⋅∇)v+(v⋅∇)
+
×(∇×v)+v×(∇×
)
First Term
(
⋅∇)v=(
x∂x∂+
y∂y∂+
z∂z∂)v=
xdtrdv∂x∂tr+
ydtrdv∂y∂tr+
zdtrdv∂z∂tr=dtrdv(
x∂x∂tr+
y∂y∂tr+
z∂z∂tr)=a(
⋅∇tr)
Here, a is the acceleration of the particle (point charge) at the retarded time.
Second Term
Since
=r−w,
(v⋅∇)
=(v⋅∇)r−(v⋅∇)w
For an arbitrary vector A=(Ax,Ay,Az),
(A⋅∇)r=(Ax∂x∂+Ay∂y∂+Az∂z∂)(xx^+yy^+zz^)=Axx^+Ayy^+Azz^=A
And
(A⋅∇)w(tr)=(Ax∂x∂+Ay∂y∂+Az∂z∂)w=Ax∂x∂w+Ay∂y∂w+Az∂z∂w=Ax∂tr∂w∂x∂tr+Ay∂tr∂w∂y∂tr+Az∂tr∂w∂z∂tr=Axv∂x∂tr+Ayv∂y∂tr+Azv∂z∂tr=v(Ax∂x∂tr+Ay∂y∂tr+Az∂z∂tr)=v(A⋅∇tr)
Thus, (3) is
(v⋅∇)
=v−v(v⋅∇tr)
Third Term
First, the following holds.
∇×v=(∂y∂vz−∂z∂vy)x^+(∂z∂vx−∂x∂vz)y^+(∂x∂vy−∂y∂vx)z^=(∂tr∂vz∂ytr−∂tr∂vy∂ztr)x^+(∂tr∂vx∂ztr−∂tr∂vz∂xtr)y^+(∂tr∂vy∂xtr−∂tr∂vx∂ytr)z^=(az(∇tr)y−ay(∇tr)z)x^+(ax(∇tr)z−az(∇tr)x)y^+(ay(∇tr)x−ax(∇tr)y)z^=−a×∇tr
Therefore
×(∇×v)=−
×(a×∇tr)
Fourth Term
Since
=r−w and ∇×r=0,
∇×
=∇×r−∇×w=−∇×w
Using the result of ∇×v=−a×∇tr calculated above, we can know ∇×w=−v×∇tr. Therefore,
v×(∇×
)=v×(−∇×w)=v×(v×∇tr)
Now, by substituting the above calculation results into (2),
∇(
⋅v)=a(
⋅∇tr)+v−v(v⋅∇tr)−
×(a×∇tr)+v×(v×∇tr)=a(
⋅∇tr)+v−v(v⋅∇tr)−[a(
⋅∇tr)−∇tr(
⋅a)]+[v(v⋅∇tr)−∇tr(v⋅v)]=v+∇tr(
⋅a)−∇tr(v⋅v)=v+(
⋅a−v2)∇tr
The second equality holds due to the BAC-CAB rule.
Conclusion
Since
=c(t−tr), ∇
=−c∇tr applies. By substituting this and (4) into (1),
∇V=4πϵ0qc(
c−
⋅v)2−1∇(
c−
⋅v)=4πϵ0qc(
c−
⋅v)2−1[c∇
−∇(
⋅v)]=4πϵ0qc(
c−
⋅v)2−1[−c2∇tr−v−(
⋅a−v2)∇tr]=4πϵ0qc(
c−
⋅v)21[v+(c2−v2+
⋅a)∇tr]
And the gradient of the retarded time is as follows.
∇tr=
c−
⋅v−
Substituting this into (5),
∇V=4πϵ0qc(
c−
⋅v)21[v+(c2−v2+
⋅a)∇tr]=4πϵ0qc(
c−
⋅v)21[v+(c2−v2+
⋅a)
c−
⋅v−
]=4πϵ0qc(
c−
⋅v)31[(
c−
⋅v)v−(c2−v2+
⋅a)
]
Finally, if we derive ∂t∂A, it is done. Upon calculation, the result is as follows.
∂t∂A=4πϵ0qc(
c−
⋅v)31[(
c+
⋅v)(
a/c−v)+c
v(c2−v2+
⋅a)]
By defining as u≡c
−v and organizing,
E(r,t)=−∇V−∂t∂A=4πϵ0q(
⋅u)3
[(c2−v2)u+u(
⋅a)−a(
⋅u)]=4πϵ0q(
⋅u)3
[(c2−v2)u+
×(u×a)]
■