logo

Electric Potential and Electromagnetic Fields 📂Electrodynamics

Electric Potential and Electromagnetic Fields

Overview1

When the charge and current distribution change over time, the electric field and magnetic field are as follows.

E=VAt \mathbf{E}= -\nabla V-\frac{\partial \mathbf{A}}{\partial t}

B=×A \mathbf{B} = \nabla \times \mathbf{A}

VV is the scalar potential, and A\mathbf{A} is the vector potential.

Description

When the charge density ρ(r,t)\rho (\mathbf{r}, t) and current density J(r,t)\mathbf{J}(\mathbf{r},t) are constant1, knowing the Coulomb’s law and the Biot-Savart law allows us to find the electric field E(r,t)\mathbf{E}(\mathbf{r},t) and the magnetic field B(r,t)\mathbf{B}(\mathbf{r},t). It is somewhat more difficult to do this when the charge and current change over time.

In electrostatics, × E=0\nabla\times \ \mathbf{E}=0 and the curl of a gradient 00, so it could be represented by E=V\mathbf{E}=-\nabla V. However, in electromagnetism, since ×E=Bt\nabla \times \mathbf{E} = -\dfrac{\partial \mathbf{B}}{\partial t}, it cannot be represented as the gradient of a scalar potential like in electrostatics. However, the divergence of a magnetic field still is 00 and the divergence of a curl 00, so like in magnetostatics, the magnetic field can still be represented as the curl of a vector potential.

B=×A \begin{equation} \mathbf{B} = \nabla \times \mathbf{A} \end{equation}

When applied to Faraday’s law,

×E=Bt    ×E=t(×A)    ×E=(×At)    ×(E+At)=0 \begin{align*} && \nabla \times \mathbf{E} &= -\dfrac{\partial \mathbf{B}}{\partial t} \\ \implies && \nabla \times \mathbf{E} &= -\frac{\partial }{\partial t} (\nabla \times \mathbf{A}) \\ \implies && \nabla \times \mathbf{E} &= -(\nabla \times \frac{\partial \mathbf{A}}{\partial t}) \\ \implies && \nabla \times \left( \mathbf{E} +\frac{\partial \mathbf{A}}{\partial t}\right) &= 0 \end{align*}

Therefore, since the curl of E+At\mathbf{E} +\frac{\partial \mathbf{A}}{\partial t} is 00, it can be represented by the gradient of a scalar potential.

E+At=V    E=VAt \begin{align} && \mathbf{E} +\frac{\partial \mathbf{A}}{\partial t} &= -\nabla V \nonumber \\ \implies && \mathbf{E} &= -\nabla V-\frac{\partial \mathbf{A}}{\partial t} \end{align}

Maxwell’s Equations

E=0B=0×E=Bt×B=μ0ϵ0Et \begin{align} \nabla \cdot \mathbf{E} &= 0 \tag{a} \\[1em] \nabla \cdot \mathbf{B} &= 0 \tag{b} \\[1em] \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \tag{c} \\[1em] \nabla \times \mathbf{B} &= \mu_{0}\epsilon_{0}\frac{\partial \mathbf{E}}{\partial t} \tag{d} \end{align}

If A\mathbf{A} is constant, then B=×A=0\mathbf{B}=\nabla \times \mathbf{A}=0, the same as in electrostatics. Inserting (2)(2) into Gauss’s law (a)(a) gives:

(V)+(At)=1ϵ0ρ    2V+t(A)=1ϵ0ρ \begin{align} && \nabla \cdot ( \nabla V) +\nabla \cdot \left( \frac{\partial \mathbf{A}}{\partial t} \right) &= -\frac{1}{\epsilon_{0}}\rho \nonumber \\ \implies && \nabla ^2 V +\dfrac{\partial }{\partial t}(\nabla \cdot \mathbf{A}) &= -\frac{1}{\epsilon_{0}}\rho \end{align}

Also, inserting (1)(1), (3)(3) into Ampère’s law (d)(d) gives:

×(×A)=μ0Jμ0ϵ0(Vt)μ0ϵ02At2 \nabla \times (\nabla \times \mathbf{A})=\mu_{0} \mathbf{J}-\mu_{0}\epsilon_{0} \nabla\left( \dfrac{\partial V}{\partial t}\right)-\mu_{0}\epsilon_{0} \dfrac{\partial ^2 \mathbf{A} }{\partial t^2}

In this case, the curl of a curl ×(×A)=(A)2A\nabla \times (\nabla \times \mathbf{A})=\nabla ( \nabla \cdot \mathbf{A}) - \nabla ^2 \mathbf{A}, so the above equation becomes:

(A)2A=μ0Jμ0ϵ0(Vt)μ0ϵ02At2    (2Aμ0ϵ02At2)(A+μ0ϵ0Vt)=μ0J \begin{align} && \nabla ( \nabla \cdot \mathbf{A}) - \nabla ^2 \mathbf{A} = \mu_{0} \mathbf{J}-\mu_{0}\epsilon_{0} \nabla\left( \dfrac{\partial V}{\partial t}\right)-\mu_{0}\epsilon_{0} \dfrac{\partial ^2 \mathbf{A} }{\partial t^2} \nonumber \\ \implies && \left( \nabla ^2 \mathbf{A}-\mu_{0}\epsilon_{0} \dfrac{\partial ^2 \mathbf{A} }{\partial t^2} \right) -\nabla\left( \nabla \cdot \mathbf{A} +\mu_{0}\epsilon_{0} \dfrac{\partial V}{\partial t}\right) = -\mu_{0} \mathbf{J} \end{align}

Therefore, information about the four Maxwell’s equations is all included in (3)(3), (4)(4).


  1. David J. Griffiths, 기초전자기학(Introduction to Electrodynamics, 김진승 역) (4th Edition1 2014), p471-472 ↩︎ ↩︎