Physics Appendix
📂Mathematical PhysicsPhysics Appendix
Fundamentals
Appendix A-1
dxd∣x∣=dxdx2=dx2dx2dxdx2=21x21⋅2x=∣x∣1x
Electromagnetism
Appendix E-1
Go to the original article
δ(f(x))=x0∑∂x∂fx=x0δ(x−x0)
In this case, x0 is a solution to f(x). Using the fact above,
δ(t′−t+c∣r−w(t′)∣)=1+∂t′∂(c∣r−w(t′)∣)t′=trδ(t′−tr)
Since dxdf(g(x))21=2f(g(x))1g′(x), if we unravel the denominator on the right side,
1+∂t′∂(c∣r−w(t′)∣)=1+c1∂t′∂([(r−w(t′))⋅(r−w(t′))]21)=1+c12(r−w(t′))⋅(r−w(t′))1∂t′∂((r−w(t′))⋅(r−w(t′)))=1+c12∣r−w(t′)∣12(r−w(t′))⋅∂t′∂(r−w(t′))=1+c∣r−w(t′)∣r−w(t′)⋅(−v(t′))=1−c∣r−w(t′)∣[r−w(t′)]⋅v(t′)
and then substitute t′=tr,
1−c∣r−w(tr)∣[r−w(tr)]⋅v(tr)=1−cηη⋅v(tr)=1−cη^⋅v(tr)
Therefore,
δ(t′−t+c∣r−w(t′)∣)=1−cη^⋅v(tr)δ(t′−tr)
■
Quantum Mechanics
Appendix Q-1
Go to the original article
A=(e−ikaike−ikaeika−ikeika),B=(eκaκeκae−κa−κe−κa)
By calculating the inverse matrices of the two matrices using minors,
A−1=∣A∣1adj(A)=−ik−ik1(−ikeika−eika−ike−ikae−ika)T=−2ik1(−ikeika−ike−ika−eikae−ika)=21(eikae−ikaik1eikaik−1e−ika)
B−1=∣B∣1adj(B)=−κ−κ1(−κe−κa−e−κa−κeκaeκa)T=−2κ1(−κe−κa−κeκa−e−κaeκa)=21(e−κaeκaκ1e−κaκ−1eκa)
Then,
(A+A−)=A−1(e−κaκe−κaeκa−κeκa)B−1(eikaikeikae−ika−ike−ika)(C+0)=21(eikae−ikaik1eikaik−1e−ika)(e−κaκe−κaeκa−κeκa)21(e−κaeκaκ1e−κaκ−1eκa)(eikaikeikae−ika−ike−ika)(C+0)=221(eikae−ikaik1eikaik−1e−ika)(e−κaκe−κaeκa−κeκa)(e−κaeκaκ1e−κaκ−1eκa)(C+eikaC+ikeika)
Let’s first compute the second and third matrices.
(e−κaκe−κaeκa−κeκa)(e−κaeκaκ1e−κaκ−1eκa)=(e−2κa+e2κaκ(e−2κa−e2κa)κ1(e−2κa−eκa)e−2κa+e2κa)=(2cosh(2κa)−2κsinh(2κa)−κ12sinh(2κa)2cosh(2κa))
Substituting this back into the original equation and calculating,
(A+A−)=21(eikae−ikaik1eikaik−1e−ika)(cosh(2κa)−κsinh(2κa)−κ1sinh(2κa)cosh(2κa))(C+eikaC+ikeika)=21(eika(cosh(2κa)−ikκsinh(2κa))e−ika(cosh(2κa)+ikκsinh(2κa))eika(−κ1sinh(2κa)+ik1cosh(2κa))e−ika(−κ1sinh(2κa)−ik1cosh(2κa)))(eikaikeika)C+
Then,
A+=21[ei2ka(cosh(2κa)−ikκsinh(2κa))+ikei2ka(−κ1sinh(2κa)+ik1cosh(2κa))]C+=21ei2ka[cosh(2κa)−ikκsinh(2κa)−κiksinh(2κa)+cosh(2κa)]C+=21ei2ka[2cosh(2κa)+i(kκ−κk)sinh(2κa)]=21ei2ka(2cosh(2κa)+i2ηsinh(2κa))C+=ei2ka(cosh(2κa)+iηsinh(2κa))C+
This time, it was substituted by kκ−κk=2η. Therefore,
A+C+=cosh(2κa)+iηsinh(2κa)e−i2ka
Also,
A−=21[cosh(2κa)+ikκsinh(2κa)−κiksinh(2κa)−cosh(2κa)]C+=21sinh(2κa)(ikκ−κik)C+=2−isinh(2κa)(kκ+κk)C+=−iξsinh(2κa)C+
This time, it was substituted by kκ+κk=2ξ. Therefore,
A+A−=ei2ka(cosh(2κa)+iηsinh(2κa))C+−iξsinh(2κa)C+=cosh(2κa)+iηsinh(2κa)−iξsinh(2κa)e−i2ka
■