logo

Hopf Bifurcation 📂Dynamics

Hopf Bifurcation

Definition

Hopf bifurcation is a bifurcation in which the stability of a fixed point changes as a parameter varies, leading to the appearance or disappearance of a new periodic orbit in a dynamical system.

Normal Form 1

Let’s consider the complex number zz represented as z=x+iyz = x + iy or in polar coordinates as z=reiϕz = r e^{i \phi}. The Hopf bifurcation can be categorized into two types: supercritical and subcritical, each with the following normal forms:

  • Supercritical:
    In Cartesian coordinates x˙=αxyx(x2+y2)y˙=x+αyy(x2+y2) \begin{align*} \dot{x} =& \alpha x - y - x \left( x^{2} + y^{2} \right) \\ \dot{y} =& x + \alpha y - y \left( x^{2} + y^{2} \right) \end{align*} In the complex plane z˙=(α+i)zzz2 \dot{z} = \left( \alpha + i \right) z - z \left| z \right|^{2} In polar coordinates r˙=r(αr2)θ˙=1 \begin{align*} \dot{r} =& r \left( \alpha - r^{2} \right) \\ \dot{\theta} =& 1 \end{align*}
  • Subcritical:
    In Cartesian coordinates x˙=αxy+x(x2+y2)y˙=x+αy+y(x2+y2) \begin{align*} \dot{x} =& \alpha x - y + x \left( x^{2} + y^{2} \right) \\ \dot{y} =& x + \alpha y + y \left( x^{2} + y^{2} \right) \end{align*} In the complex plane z˙=(α+i)z+zz2 \dot{z} = \left( \alpha + i \right) z + z \left| z \right|^{2} In polar coordinates r˙=r(α+r2)θ˙=1 \begin{align*} \dot{r} =& r \left( \alpha + r^{2} \right) \\ \dot{\theta} =& 1 \end{align*}

Diagram

  • Supercritical: As α\alpha increases, in α0\alpha \le 0, z=0z = 0 transitions from a stable node to an unstable node at α>0\alpha > 0, leading to the emergence of a stable limit cycle. alt text alt text

  • Subcritical: As α\alpha decreases, in α0\alpha \ge 0, z=0z = 0 transitions from an unstable node to a stable node at α<0\alpha < 0, leading to the emergence of an unstable limit cycle. alt text alt text

Explanation

Hopf bifurcation, also known as Poincaré–Andronov–Hopf bifurcation for its full name, is a type of bifurcation easily observed in mathematical models related to Lotka-Volterra predator-prey models or chemical reactions2 3.

alt text alt text

See Also


  1. Kuznetsov. (1998). Elements of Applied Bifurcation Theory: p86~89. ↩︎

  2. Kuznetsov. (1998). Elements of Applied Bifurcation Theory: p104. ↩︎

  3. Strogatz. (2015). Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering(2nd Edition): p256~259. ↩︎