logo

Jacobi's Formula 📂Vector Analysis

Jacobi's Formula

Formula

Let A=A(t)A = A(t) be a differentiable matrix function. The derivative of the determinant detA(t)\det A(t) is given by:

ddtdetA(t)=Tr((adjA(t))dA(t)dt)=detA(t)Tr(A1(t)dA(t)dt) \dfrac{\mathrm{d}}{\mathrm{d} t} \det A(t) = \Tr \Big( (\operatorname{adj}A(t)) \dfrac{\mathrm{d}A(t)}{\mathrm{d}t} \Big) = \det A(t) \cdot \Tr\left( A^{-1}(t) \dfrac{\mathrm{d}A(t)}{\mathrm{d}t} \right)

This is known as Jacobi’s formula. In the form of a total differential, it can be written as follows. The second equality holds when AA is an invertible matrix.

d(detA)=Tr((adjA)dA)=detATr(A1dA) \mathrm{d}(\det A) = \Tr \Big( (\operatorname{adj}A) \mathrm{d}A \Big) = \det A \cdot \Tr(A^{-1} \mathrm{d}A)

Here, adj\operatorname{adj} denotes the adjugate matrix, Tr\Tr represents the trace, and dA\mathrm{d}A refers to the matrix differential.

Proof

For simplicity, denote A=A(t)A = A(t), and let A=[Aij]A = [A_{ij}]. The Laplace expansion of a matrix is as follows:

detA=jAij[adjA]jifor fixed i \det A = \sum\limits_{j} A_{ij} [\operatorname{adj}A]_{ji} \qquad \text{for fixed }i

Consider the determinant as a multivariable function det(A)=F(A11,A12,,Ann)\det(A) = F(A_{11}, A_{12}, \dots, A_{nn}) with n2n^{2} variables, then its total differential is:

d(detA)=i,jFAijdAij \mathrm{d} (\det A) = \sum_{i,j} \dfrac{\partial F}{\partial A_{ij}}\mathrm{d}A_{ij}

Upon calculating the partial derivatives, we find:

FAij=Aij(kAik[adjA]ki)=k(AikAij[adjA]ki+AikAij[adjA]ki)=kAikAij[adjA]ki+kAikAij[adjA]ki=[adjA]ji+kAikAij[adjA]ki \begin{align*} \dfrac{\partial F}{\partial A_{ij}} &= \dfrac{\partial }{\partial A_{ij}}\left( \sum\limits_{k} A_{ik} [\operatorname{adj}A]_{ki}\right) \\ &= \sum\limits_{k} \left( \dfrac{\partial A_{ik}}{\partial A_{ij}} [\operatorname{adj}A]_{ki} + A_{ik}\dfrac{\partial }{\partial A_{ij}}[\operatorname{adj}A]_{ki} \right) \\ &= \sum\limits_{k} \dfrac{\partial A_{ik}}{\partial A_{ij}} [\operatorname{adj}A]_{ki} + \sum\limits_{k}A_{ik}\dfrac{\partial }{\partial A_{ij}}[\operatorname{adj}A]_{ki} \\ &= [\operatorname{adj}A]_{ji} + \sum\limits_{k}A_{ik}\dfrac{\partial }{\partial A_{ij}}[\operatorname{adj}A]_{ki} \\ \end{align*}

However, considering the definition of the cofactor, for all kk, [adjA]ki[\operatorname{adj}A]_{ki} does not include AijA_{ij}, hence the partial derivative with respect to AijA_{ij} is 00.

FAij=[adjA]ji(1) \dfrac{\partial F}{\partial A_{ij}} = [\operatorname{adj}A]_{ji} \tag{1}

Thus, we obtain:

d(detA)=i,j[adjA]jidAij=ij[adjA]jidAij=j[(adjA)dA]jj=Tr((adjA)dA) \begin{align*} \mathrm{d}(\det A) &= \sum\limits_{i,j} [\operatorname{adj}A]_{ji} \mathrm{d}A_{ij} \\ &= \sum\limits_{i} \sum\limits_{j} [\operatorname{adj}A]_{ji} \mathrm{d}A_{ij} \\ &= \sum\limits_{j} [(\operatorname{adj}A) \mathrm{d}A]_{jj} \\ &= \Tr \Big( (\operatorname{adj}A) \mathrm{d}A \Big) \end{align*}

The third equality holds due to the matrix product representation, and the fourth equality is due to the definition of the trace. dA\mathrm{d}A is the matrix differential.

Meanwhile, if AA is an invertible matrix, then adjA=(detA)A1\operatorname{adj}A = (\det A) A^{-1}, and Tr(kA)=kTr(A)\Tr(kA) = k\Tr(A), giving us:

d(detA)=Tr((adjA)dA)=Tr((detA)A1dA)=detATr(A1dA) \mathrm{d}(\det A) = \Tr \Big( (\operatorname{adj}A) \mathrm{d}A \Big) = \Tr \Big( (\det A) A^{-1} \mathrm{d}A \Big) = \det A \Tr \Big( A^{-1} \mathrm{d}A \Big)

On the other hand, d(detA)dt\dfrac{\mathrm{d} (\det A)}{\mathrm{d}t}, by the chain rule, is given by:

d(detA)dt=d(detA)dAdAdt \dfrac{\mathrm{d} (\det A)}{\mathrm{d}t} = \dfrac{\mathrm{d} (\det A)}{\mathrm{d}A} \cdot \dfrac{\mathrm{d}A}{\mathrm{d}t}

According to (1)(1), it is d(detA)dA=(adjA)T\dfrac{\mathrm{d} (\det A)}{\mathrm{d}A} = (\operatorname{adj}A)^{\mathsf{T}} and AB=Tr(ATB)AB = \Tr(A ^{\mathsf{T}}B), thus:

d(detA)dt=(adjA)TdAdt=Tr((adjA)dAdt)=detATr(A1dAdt) \dfrac{\mathrm{d} (\det A)}{\mathrm{d}t} = (\operatorname{adj}A)^{\mathsf{T}} \dfrac{\mathrm{d}A}{\mathrm{d}t} = \Tr \left( (\operatorname{adj}A) \dfrac{\mathrm{d}A}{\mathrm{d}t} \right) = \det A \cdot \Tr \left( A^{-1} \dfrac{\mathrm{d}A}{\mathrm{d}t} \right)