logo

Sobolev Spaces are Banach Spaces: A Proof

Sobolev Spaces are Banach Spaces: A Proof

Theorem1

The Sobolev space Wm,pW^{m, p} is a Banach space.

Description

A Banach space is defined as a space where a norm is defined and is complete. As the norm is also defined when defining the Sobolev space, we only need to verify that it is complete. Therefore, it suffices to show that the Cauchy sequence within Wm,pW^{m, p} converges within Wm,pW^{m, p}. The proof is relatively straightforward.

Proof

Let ΩRn\Omega \subset \mathbb{R}^{n} be an open set. Let {un}\left\{ u_{n} \right\} be a Cauchy sequence within Wm,pW^{m, p}.

Definition of Sobolev Space

Wm,p(Ω):={uLp(Ω):DαuLp(Ω), 0αm} W^{m, p}(\Omega):=\left\{ u \in L^{p}(\Omega) : D^\alpha u \in L^{p}(\Omega),\ 0\le |\alpha | \le m \right\}

Here, DαuD^\alpha u is the weak derivative of uu.

Then, by the definition of Wm,pW^{m, p}, {Dαun}\left\{ D^\alpha u_{n} \right\} is a Cauchy sequence in the LpL^{p} space with respect to 0αm0\le |\alpha| \le m. Since LpL^{p} is a complete space, both Cauchy sequences converge. Let these limits be uu and uαu_\alpha, respectively.

unuin Lp u_{n} \rightarrow u \quad \mathrm{in}\ L^{p}

Dαunuαfor 0αmin Lp D^\alpha u_{n} \rightarrow u_\alpha\quad \mathrm{for}\ 0\le |\alpha | \le m \quad \mathrm{in} \ L^{p}

Moreover, unLp(Ω)Lloc1(Ω)u_{n} \in L^{p}(\Omega) \subset L_{\text{loc}}^{1}(\Omega) is locally integrable, so there exists the corresponding distributional TunD(Ω)T_{u_{n}} \in D^{\prime}(\Omega).

Tun(ϕ)=Ωun(x)ϕ(x)dx,ϕD(Ω) T_{u_{n}}(\phi)=\int_{\Omega} u_{n}(x)\phi (x)dx,\quad \phi \in D(\Omega)

Then,

Tun(ϕ)Tu(ϕ)un(x)u(x)ϕ(x)dxunup ϕp \left| T_{u_{n}}(\phi)-T_{u}(\phi) \right| \le \int |u_{n}(x)-u(x)||\phi (x)|dx \le \|u_{n}-u\|_{p}\ \|\phi\|_{p^{\prime}}

The first inequality is due to the properties of absolute values, and the second inequality holds by the Hölder’s inequality. pp^{\prime} is the conjugate exponent of pp. And since unuu_{n} \rightarrow u, the above expression converges to 00.

Tun(ϕ)Tu(ϕ),ϕD(Ω) as n \begin{equation} T_{u_{n}}(\phi) \rightarrow T_{u}(\phi), \quad \forall \phi\in D(\Omega)\ \mathrm{as}\ n\rightarrow \infty \end{equation}

In the same manner, it can be verified that the equation below holds as well.

TDαun(ϕ)Tuα(ϕ) \begin{equation} T_{D^\alpha u_{n}}(\phi) \rightarrow T_{u_\alpha}(\phi) \end{equation}

Now, let’s compute TuαT_{u_\alpha}.

Tuα(ϕ)= limnTDαun(ϕ)= limn(1)αTun(Dαϕ)= (1)αTu(Dαϕ) \begin{align*} T_{u_\alpha}(\phi) =&\ \lim \limits_{n\rightarrow \infty}T_{D^\alpha u_{n}}(\phi) \\ =&\ \lim \limits_{n\rightarrow \infty} (-1)^{|\alpha|}T_{u_{n}}(D^\alpha \phi) \\ =&\ (-1)^{|\alpha|}T_{u}(D^\alpha \phi) \end{align*}

The first equation holds by (2)(2). As when defining the differentiation of distributions, using integration by parts shows that it amounts to TDαun(ϕ)=Tun(Dαϕ)T_{D^\alpha u_{n}}(\phi)=T_{u_{n}}(D^\alpha \phi), thus validating the second equation. The third equation is true due to (1)(1). By the definition of weak derivatives, uαu_\alpha and DαuD^\alpha u are the same with respect to 0αm0 \le |\alpha | \le m in a distributional sense. Therefore, it is Dαunuα=DαuD^\alpha u_{n} \rightarrow u_\alpha=D^\alpha u. Now, we check if unum,p\| u_{n} -u\|_{m, p} converges to 00. When 1p<1 \le p < \infty,

limnunum,pp= limn0αmDαunDαupp= 0αmuαDαupp= 0αmDαuDαupp= 0 \begin{align*} \lim \limits_{n \rightarrow \infty} \|u_{n}-u\|_{m, p}^p =&\ \lim \limits_{n \rightarrow \infty} \sum\limits_{0\le |\alpha| \le m } \|D^\alpha u_{n}-D^\alpha u \|^p_{p} \\ =&\ \sum\limits_{0\le |\alpha| \le m } \|u_\alpha-D^\alpha u \|^p_{p} \\ =&\ \sum\limits_{0\le |\alpha| \le m } \|D^\alpha u-D^\alpha u \|^p_{p} \\ =&\ 0 \end{align*}

Similarly, when p=p=\infty,

limnunum,p= limnmax0αmDαunDαu= limnmax0αmuαDαu= limnmax0αmDαuDαu= 0 \begin{align*} \lim \limits_{n \rightarrow \infty} \|u_{n}-u\|_{m, p} =&\ \lim \limits_{n \rightarrow \infty}\max\limits_{0\le |\alpha| \le m} \|D^\alpha u_{n} - D^\alpha u\|_\infty \\ =&\ \lim \limits_{n \rightarrow \infty}\max\limits_{0\le |\alpha| \le m} \|u_\alpha - D^\alpha u\|_\infty \\ =&\ \lim \limits_{n \rightarrow \infty}\max\limits_{0\le |\alpha| \le m} \|D^\alpha u - D^\alpha u\|_\infty \\ =&\ 0 \end{align*}


  1. Robert A. Adams and John J. F. Foutnier, Sobolev Space (2nd Edition, 2003), p61 ↩︎