logo

Hamiltonian and Lagrangian Convex Duality 📂Partial Differential Equations

Hamiltonian and Lagrangian Convex Duality

Theorem1

Legendre Transform

  • LL is a convex function.
  • limvL(v)v=+\lim \limits_{ |v|\to \infty} \dfrac{ L(v) }{ |v| }=+\infty

Given the conditions, the Legendre transform L:RnRL^{\ast} : \mathbb{R}^{n} \to \mathbb{R} of LL for the Lagrangian L:RnRL : \mathbb{R}^{n} \to \mathbb{R} is defined as follows:

L(p):=supvRn(pvL(v)) pRn L^{\ast} (p) := \sup \limits_{v \in \mathbb{R}^{n}} \big( p\cdot v -L(v) \big) \quad \forall \ p \in \mathbb{R}^{n}

Let’s assume the Lagrangian LL satisfies the conditions for the Legendre transform to be defined. Let the Hamiltonian HH be the Legendre transform of LL. H=L H=L^{\ast}

Then, HH also satisfies the two conditions necessary for the definition of the Legendre transform, and L=HL=H^{\ast} holds.

  • (a) HH is a convex function.

    λH(v1)+(1λ)H(v2)H(λv1+(1λ)v2) v1,v2Rn, 0λ1 \lambda H(v_{1}) + (1-\lambda) H(v_{2}) \le H\big( \lambda v_{1} +(1-\lambda)v_{2} \big) \quad \forall\ v_{1},v_{2}\in \mathbb{R}^{n},\quad \forall\ 0\le \lambda \le 1

  • (b) limpH(p)p=+\lim \limits_{ |p|\to \infty} \dfrac{ H(p) }{ |p| }=+\infty

  • (c) L=HL=H^{\ast}

The converse also holds. Moreover, if HH and LL are differentiable at pp and vRnv\in \mathbb{R}^{n}, then all the following statements are equivalent.

  • pv=L(v)+H(p)p\cdot v=L(v) + H(p)
  • p=DL(v)p=DL(v)
  • v=DH(p)v=DH(p)

Proof

(a)

Suppose p,qRnp,q \in \mathbb{R}^{n} and 0τ10 \le \tau \le 1. Then, the following holds.

H(τp+(1τ)q)=supvRn((τp+(1τ)q)vL(v))=supvRn(τ(pvL(v))+(1τ)(qvL(v)))τsupv(pvL(v))+(1τ)supv(qvL(v))=τH(p)+(1τ)H(q) \begin{align*} H(\tau p+(1-\tau)q) &= \sup \limits_{v\in \mathbb{R}^{n}} \big( (\tau p + (1-\tau) q) \cdot v -L(v) \big) \\ &= \sup \limits_{v\in \mathbb{R}^{n}} \big( \tau ( p \cdot v -L(v) ) +(1-\tau)(q \cdot v -L(v)) \big) \\ &\le \tau \sup \limits_{v} (p\cdot v - L(v) ) +(1-\tau) \sup \limits_{v} (q\cdot v -L(v)) \\ &= \tau H(p) + (1-\tau)H(q) \end{align*}

The second equality follows by adding τL(v)τL(v)\tau L(v) -\tau L(v). The third line holds because LL is a convex function. The final equality is due to the definition of the Legendre transform and the assumption H=LH=L^{\ast}.

(b)

Consider any fixed positive number λ>0\lambda >0 and suppose p0Rnp\ne 0 \in \mathbb{R}^{n}. Then, by assumption, the following holds.

H(p)=supvRn(pvL(v)) H(p)= \sup \limits_{v \in \mathbb{R}^{n}}( p\cdot v - L(v))

If we let v=λppv=\lambda \frac{p}{|p|}, then by the definition of sup\sup, if any vv is substituted into the above equation, it results in a value less than or equal, thus the following is obtained.

H(p)=supvRn(pvL(v))λpL(λpp)λpmaxB(0,λ)L \begin{align*} H(p) &= \sup \limits_{v \in \mathbb{R}^{n}}( p\cdot v -L(v)) \\ &\ge \lambda |p| -L \left( \lambda \frac{p}{|p|} \right) \\ & \ge \lambda |p| - \max \limits_{B(0,\lambda)} L \end{align*}

Dividing both sides by p|p| gives:

H(p)pλmaxLp \dfrac{H(p)}{|p|} \ge \lambda - \dfrac{\max L}{ |p| }

This implies that the following equation holds.

lim infpH(p)pλ \liminf \limits_{|p| \to \infty} \dfrac{ H(p) }{ |p| } \ge \lambda

Since the above equation holds for any λ\lambda, we obtain:

lim infpH(p)p= \liminf \limits_{|p| \to \infty} \dfrac{ H(p) }{ |p| } = \infty

Therefore, it is as follows:

limpH(p)p= \lim \limits_{|p| \to \infty} \dfrac{ H(p) }{ |p| } = \infty

(c)

Since H=LH=L^{\ast} and L=sup(pvL(v))L^{\ast}=\sup (p \cdot v -L(v)), for any vv, HH is always greater or equal.

H(p)pvL(v) vRn H(p) \ge p \cdot v -L(v) \quad \forall \ v\in \mathbb{R}^{n}

Permuting HH and LL gives:

L(v)pvH(p) vRn L(v) \ge p \cdot v -H(p) \quad \forall \ v\in \mathbb{R}^{n}

Taking sup\sup for pRnp \in \mathbb{R}^{n} on both sides, the right side equals HH^{\ast} by the definition of the Legendre transform.

L(v)suppRn(pvH(p))=H(v) L(v) \ge \sup_{p \in \mathbb{R}^{n}} \big( p \cdot v -H(p) \big) =H^{\ast}(v)

Now, to prove that the opposite inequality L(v)H(v)L(v) \le H^{\ast}(v) holds, HH^{\ast} is defined as follows by definition.

H(v)=suppRn(pvH(p)) H^{\ast}(v)= \sup_{p \in \mathbb{R}^{n}} \big( p \cdot v-H(p)\big)

However, since we assumed H=LH=L^{\ast}, we obtain:

H(v)=suppRn(pvsuprRn(prL(r)))=suppinfr(p(vr)+L(r) ) \begin{equation} \begin{aligned} H^{\ast}(v) &= \sup_{p \in \mathbb{R}^{n}} \big( p \cdot v-\sup_{r \in \mathbb{R}^{n}}\big( p\cdot r - L(r) \big) \big) \\ &= \sup_{p} \inf_{r} \big( p\cdot(v-r) + L(r)\ \big) \end{aligned} \label{eq1} \end{equation}

Lemma

If a function f:RnRf : \mathbb{R}^{n} \to \mathbb{R} is convex, for all xRnx \in \mathbb{R}^{n}, there exists rRnr \in \mathbb{R}^{n} satisfying the following:

f(y)f(x)+r(yx) yRn f(y) \ge f(x) + r\cdot(y-x) \quad \forall\ y\in \mathbb{R}^{n}

Since LL is convex, by the Lemma, for all vRnv \in \mathbb{R}^{n}, there exists sRns \in \mathbb{R}^{n} satisfying the following condition.

L(r)L(v)+s(rv) rRn L(r) \ge L(v)+s\cdot(r-v) \quad \forall \ r\in \mathbb{R}^{n}

Permuting s(rv)s\cdot (r-v) and substituting p=sp=s gives (eq1)\eqref{eq1} as follows.

H(v)infr(s(vr))=L(v) H^{\ast}(v) \ge \inf_{r} \big( s\cdot (v-r) \big) =L(v)

Therefore, H(v)L(v)H^{\ast}(v) \ge L(v) and, H(v)=L(v)H^{\ast}(v)=L(v) holds.


  1. Lawrence C. Evans, Partial Differential Equations (2nd Edition, 2010), p121-122 ↩︎