logo

Back Projection: The Dual of the Radon Transform 📂Tomography

Back Projection: The Dual of the Radon Transform

Definition1 2

The dual operator R#:L2(Zn)L2(Rn)\mathcal{R}^{\#} : L^{2}(Z_{n}) \to L^{2}(\mathbb{R}^{n}) of the Radon transform R:L2(Rn)L2(Zn)\mathcal{R} : L^{2}(\mathbb{R}^{n}) \to L^{2}(Z_{n}) is referred to as back projection.

Rf,gL2(Zn)=f,R#gL2(Rn) \left\langle \mathcal{R}f ,g \right\rangle_{L^{2}(Z_{n})} = \left\langle f , \mathcal{R}^{\#}g \right\rangle_{L^{2}(\mathbb{R}^{n})}

Here, Zn:=R1×Sn1Z_{n} := \mathbb{R}^{1} \times S^{n-1} is the unit cylinder of Rn+1\mathbb{R}^{n+1}.

Theorem

Formula

Specifically, back projection is as follows.

R#g(x)=Sn1g(xθ,θ)dθ \mathcal{R}^{\#} g (\mathbf{x}) = \int_{S^{n-1}} g (\mathbf{x} \cdot \boldsymbol{\theta}, \boldsymbol{\theta}) d\boldsymbol{\theta}

Especially in 2 dimensions,

R#g(x,y)=02πg(xcosθ+ysinθ,θ)dθ \mathcal{R}^{\#} g (x,y) = \int_{0}^{2\pi} g (x\cos\theta + y\sin\theta, \theta) d\theta

Back Projection of the Radon Transform

The following equation holds.

R#Rf=Sn21xf \mathcal{R}^{\#} \mathcal{R} f = \left| S^{n-2} \right| \dfrac{1}{\left| \mathbf{x} \right|} \ast f

Where \ast is convolution, Sn1\left| S^{n-1} \right| is the surface area of a sphere in nn dimensions. Especially in 2 dimensions,

R#Rf=2xf \mathcal{R}^{\#} \mathcal{R} f = \dfrac{2}{\left| \mathbf{x} \right|} \ast f

Explanation

Since back projection is the dual of the Radon transform, it can be thought of as a candidate for the inverse Radon transform. However, the Radon transform is not unitary, so the following does not hold.

R1R# \mathcal{R}^{-1} \ne \mathcal{R}^{\#}

Looking at the second theorem, one can see that R#Rf\mathcal{R}^{\#}\mathcal{R}f is similar to ff, but not the same. In fact, it appears to be a blur of the original.

슬라이드6.PNG

Therefore, in order to accurately obtain ff, it must go through another operator that acts as a filter, and such an inverse Radon transform is called a filtered back projection.

Geometric Meaning and Visualization

For understanding, consider 2 dimensions. The back projection of the Radon transform is as follows.

R#Rf(x)= 02πRf(xθ,θ)dθ,θ=(cosθ,sinθ) \mathcal{R}^{\#} \mathcal{R} f(\mathbf{x}) =\ \int_{0}^{2\pi} \mathcal{R}f(\mathbf{x} \cdot \boldsymbol{\theta}, \theta) d \theta ,\quad \boldsymbol{\theta} = (\cos \theta, \sin \theta)

Where Rf(xθ,θ)\mathcal{R}f(\mathbf{x} \cdot \boldsymbol{\theta}, \theta) is, ff integrated over a line lxθ,θl_{\mathbf{x}\cdot \boldsymbol{\theta}, \theta} that is at a distance xθ\mathbf{x} \cdot \boldsymbol{\theta} from the origin and perpendicular to θ\boldsymbol{\theta}. This line is a line passing through point x\mathbf{x} at an angle perpendicular to θ\theta.

그림4.png

However, since back projection is summing (integrating) value Rf(xθ,θ)\mathcal{R}f(\mathbf{x} \cdot \boldsymbol{\theta}, \theta) over all θ[0,2π)\theta \in [0,2\pi), R#Rf(x)\mathcal{R}^{\#} \mathcal{R} f(\mathbf{x}) becomes the average (divided by 2π2\pi) of the line integrals of ff passing through point x\mathbf{x}.

그림5.png

The following pictures show the process of accumulating the value of Rf(xθ,θ)\mathcal{R}f(\mathbf{x} \cdot \boldsymbol{\theta}, \theta) from θ=0\theta = 0 when calculating R#Rf(x)\mathcal{R}^{\#} \mathcal{R} f(\mathbf{x}).

Proof

Formula

Rf,gL2(Zn)= RSn1Rf(s,θ)g(s,θ)dθds= RSn1Rf(sθ+tθ)dtg(s,θ)dθds= RRSn1f(sθ+tθ)g(s,θ)dθdsdt \begin{align*} \left\langle \mathcal{R}f ,g \right\rangle_{L^{2}(Z_{n})} =&\ \int_{\mathbb{R}}\int_{S^{n-1}} \mathcal{R}f(s, \boldsymbol{\theta}) g(s, \boldsymbol{\theta}) d\boldsymbol{\theta} ds \\ =&\ \int_{\mathbb{R}}\int_{S^{n-1}} \int_{\mathbb{R}}f(s\boldsymbol{\theta} + t\boldsymbol{\theta}^{\perp})dt g(s, \boldsymbol{\theta}) d\boldsymbol{\theta} ds \\ =&\ \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{S^{n-1}} f(s\boldsymbol{\theta} + t\boldsymbol{\theta}^{\perp}) g(s, \boldsymbol{\theta}) d\boldsymbol{\theta} ds dt \end{align*}

Substituting with sθ+tθ=xs \boldsymbol{\theta} + t \boldsymbol{\theta}^{\perp} = \mathbf{x}, we get s=xθs = \mathbf{x} \cdot \boldsymbol{\theta}, and the following holds.

Rf,gL2(Zn)= RnSn1f(x)g(xθ,θ)dθdx= Rnf(x)(Sn1g(xθ,θ)dθ)dx= f,(Sn1g(,θ,θ)dθ)L2(Rn) \begin{align*} \left\langle \mathcal{R}f ,g \right\rangle_{L^{2}(Z_{n})} =&\ \int_{\mathbb{R}^{n}}\int_{S^{n-1}} f(\mathbf{x}) g(\mathbf{x} \cdot \boldsymbol{\theta}, \boldsymbol{\theta}) d\boldsymbol{\theta} d \mathbf{x} \\ =&\ \int_{\mathbb{R}^{n}} f(\mathbf{x}) \left( \int_{S^{n-1}} g(\mathbf{x} \cdot \boldsymbol{\theta}, \boldsymbol{\theta}) d\boldsymbol{\theta} \right) d \mathbf{x} \\ =&\ \left\langle f, \left( \int_{S^{n-1}} g(\left\langle \cdot, \boldsymbol{\theta} \right\rangle, \boldsymbol{\theta}) d\boldsymbol{\theta} \right) \right\rangle_{L^{2}(\mathbb{R}^{n})} \end{align*}

Therefore,

R#g(x)=Sn1g(xθ,θ)dθ \mathcal{R}^{\#} g (\mathbf{x}) = \int_{S^{n-1}} g (\mathbf{x} \cdot \boldsymbol{\theta}, \boldsymbol{\theta}) d\boldsymbol{\theta}

Back Projection of the Radon Transform3

R#Rf(x)= Sn1Rf(xθ,θ)dθ= Sn1yθ=0f((xθ)θ+y)dydθ \begin{align*} \mathcal{R}^{\#} \mathcal{R} f(\mathbf{x}) =&\ \int\limits_{S^{n-1}} \mathcal{R}f(\mathbf{x} \cdot \boldsymbol{\theta}, \boldsymbol{\theta}) d \boldsymbol{\theta} \\ =&\ \int\limits_{S^{n-1}} \int\limits_{\mathbf{y} \cdot \boldsymbol{\theta} = 0} f\big((\mathbf{x} \cdot \boldsymbol{\theta})\boldsymbol{\theta} + \mathbf{y} \big) d \mathbf{y} d \boldsymbol{\theta} \\ \end{align*}

Here, (xθ)θ=x(xθ)θ(\mathbf{x} \cdot \boldsymbol{\theta})\boldsymbol{\theta} = \mathbf{x} - (\mathbf{x} \cdot \boldsymbol{\theta}^{\perp})\boldsymbol{\theta}^{\perp}, and since the second term is included in y\mathbf{y} which is yθ=0\mathbf{y} \cdot \boldsymbol{\theta} = 0, the integral is as follows.

R#Rf(x)= Sn1yθ=0f(x+y)dydθ \mathcal{R}^{\#} \mathcal{R} f(\mathbf{x}) =\ \int\limits_{S^{n-1}} \int\limits_{\mathbf{y} \cdot \boldsymbol{\theta} = 0} f(\mathbf{x} + \mathbf{y} ) d \mathbf{y} d \boldsymbol{\theta}

Auxiliary Theorem

Sn1yθ=0f(x+y)dydθ=Sn2Rnf(y)xydy \int \limits_{S^{n-1}} \int \limits_{\mathbf{y} \cdot \boldsymbol{\theta} = 0} f(\mathbf{x} + \mathbf{y}) d \mathbf{y} d \boldsymbol{\theta} = \left| S^{n-2} \right| \int \limits_{\mathbb{R}^{n}} \dfrac{f(\mathbf{y})}{\left| \mathbf{x} - \mathbf{y} \right|}d \mathbf{y}

Then, by the auxiliary theorem,

R#Rf(x)=Sn2Rnf(y)xydy=Sn21xf \mathcal{R}^{\#} \mathcal{R} f(\mathbf{x}) = \left| S^{n-2} \right| \int \limits_{\mathbb{R}^{n}} \dfrac{f(\mathbf{y})}{\left| \mathbf{x} - \mathbf{y} \right|}d \mathbf{y} = \left| S^{n-2} \right| \dfrac{1}{\left| \mathbf{x} \right|} \ast f


  1. Frank Natterer, The Mathematics of Computerized Tomography (2001), p13 ↩︎

  2. Peter Kuchment, The Radon Transform and Medical Imaging (2014), p34-36 ↩︎

  3. Frank Natterer, The Mathematics of Computerized Tomography (2001), p15-16 ↩︎