Back Projection: The Dual of the Radon Transform
📂Tomography Back Projection: The Dual of the Radon Transform Definition The dual operator R # : L 2 ( Z n ) → L 2 ( R n ) \mathcal{R}^{\#} : L^{2}(Z_{n}) \to L^{2}(\mathbb{R}^{n}) R # : L 2 ( Z n ) → L 2 ( R n ) of the Radon transform R : L 2 ( R n ) → L 2 ( Z n ) \mathcal{R} : L^{2}(\mathbb{R}^{n}) \to L^{2}(Z_{n}) R : L 2 ( R n ) → L 2 ( Z n ) is referred to as back projection .
⟨ R f , g ⟩ L 2 ( Z n ) = ⟨ f , R # g ⟩ L 2 ( R n )
\left\langle \mathcal{R}f ,g \right\rangle_{L^{2}(Z_{n})} = \left\langle f , \mathcal{R}^{\#}g \right\rangle_{L^{2}(\mathbb{R}^{n})}
⟨ R f , g ⟩ L 2 ( Z n ) = ⟨ f , R # g ⟩ L 2 ( R n )
Here, Z n : = R 1 × S n − 1 Z_{n} := \mathbb{R}^{1} \times S^{n-1} Z n := R 1 × S n − 1 is the unit cylinder of R n + 1 \mathbb{R}^{n+1} R n + 1 .
Theorem Specifically, back projection is as follows.
R # g ( x ) = ∫ S n − 1 g ( x ⋅ θ , θ ) d θ
\mathcal{R}^{\#} g (\mathbf{x}) = \int_{S^{n-1}} g (\mathbf{x} \cdot \boldsymbol{\theta}, \boldsymbol{\theta}) d\boldsymbol{\theta}
R # g ( x ) = ∫ S n − 1 g ( x ⋅ θ , θ ) d θ
Especially in 2 dimensions,
R # g ( x , y ) = ∫ 0 2 π g ( x cos θ + y sin θ , θ ) d θ
\mathcal{R}^{\#} g (x,y) = \int_{0}^{2\pi} g (x\cos\theta + y\sin\theta, \theta) d\theta
R # g ( x , y ) = ∫ 0 2 π g ( x cos θ + y sin θ , θ ) d θ
The following equation holds.
R # R f = ∣ S n − 2 ∣ 1 ∣ x ∣ ∗ f
\mathcal{R}^{\#} \mathcal{R} f = \left| S^{n-2} \right| \dfrac{1}{\left| \mathbf{x} \right|} \ast f
R # R f = S n − 2 ∣ x ∣ 1 ∗ f
Where ∗ \ast ∗ is convolution , ∣ S n − 1 ∣ \left| S^{n-1} \right| S n − 1 is the surface area of a sphere in n n n dimensions. Especially in 2 dimensions,
R # R f = 2 ∣ x ∣ ∗ f
\mathcal{R}^{\#} \mathcal{R} f = \dfrac{2}{\left| \mathbf{x} \right|} \ast f
R # R f = ∣ x ∣ 2 ∗ f
Explanation Since back projection is the dual of the Radon transform, it can be thought of as a candidate for the inverse Radon transform. However, the Radon transform is not unitary , so the following does not hold.
R − 1 ≠ R #
\mathcal{R}^{-1} \ne \mathcal{R}^{\#}
R − 1 = R #
Looking at the second theorem, one can see that R # R f \mathcal{R}^{\#}\mathcal{R}f R # R f is similar to f f f , but not the same. In fact, it appears to be a blur of the original.
Therefore, in order to accurately obtain f f f , it must go through another operator that acts as a filter, and such an inverse Radon transform is called a filtered back projection .
Geometric Meaning and Visualization For understanding, consider 2 dimensions. The back projection of the Radon transform is as follows.
R # R f ( x ) = ∫ 0 2 π R f ( x ⋅ θ , θ ) d θ , θ = ( cos θ , sin θ )
\mathcal{R}^{\#} \mathcal{R} f(\mathbf{x}) =\ \int_{0}^{2\pi} \mathcal{R}f(\mathbf{x} \cdot \boldsymbol{\theta}, \theta) d \theta ,\quad \boldsymbol{\theta} = (\cos \theta, \sin \theta)
R # R f ( x ) = ∫ 0 2 π R f ( x ⋅ θ , θ ) d θ , θ = ( cos θ , sin θ )
Where R f ( x ⋅ θ , θ ) \mathcal{R}f(\mathbf{x} \cdot \boldsymbol{\theta}, \theta) R f ( x ⋅ θ , θ ) is, f f f integrated over a line l x ⋅ θ , θ l_{\mathbf{x}\cdot \boldsymbol{\theta}, \theta} l x ⋅ θ , θ that is at a distance x ⋅ θ \mathbf{x} \cdot \boldsymbol{\theta} x ⋅ θ from the origin and perpendicular to θ \boldsymbol{\theta} θ . This line is a line passing through point x \mathbf{x} x at an angle perpendicular to θ \theta θ .
However, since back projection is summing (integrating) value R f ( x ⋅ θ , θ ) \mathcal{R}f(\mathbf{x} \cdot \boldsymbol{\theta}, \theta) R f ( x ⋅ θ , θ ) over all θ ∈ [ 0 , 2 π ) \theta \in [0,2\pi) θ ∈ [ 0 , 2 π ) , R # R f ( x ) \mathcal{R}^{\#} \mathcal{R} f(\mathbf{x}) R # R f ( x ) becomes the average (divided by 2 π 2\pi 2 π ) of the line integrals of f f f passing through point x \mathbf{x} x .
The following pictures show the process of accumulating the value of R f ( x ⋅ θ , θ ) \mathcal{R}f(\mathbf{x} \cdot \boldsymbol{\theta}, \theta) R f ( x ⋅ θ , θ ) from θ = 0 \theta = 0 θ = 0 when calculating R # R f ( x ) \mathcal{R}^{\#} \mathcal{R} f(\mathbf{x}) R # R f ( x ) .
Proof ⟨ R f , g ⟩ L 2 ( Z n ) = ∫ R ∫ S n − 1 R f ( s , θ ) g ( s , θ ) d θ d s = ∫ R ∫ S n − 1 ∫ R f ( s θ + t θ ⊥ ) d t g ( s , θ ) d θ d s = ∫ R ∫ R ∫ S n − 1 f ( s θ + t θ ⊥ ) g ( s , θ ) d θ d s d t
\begin{align*}
\left\langle \mathcal{R}f ,g \right\rangle_{L^{2}(Z_{n})}
=&\ \int_{\mathbb{R}}\int_{S^{n-1}} \mathcal{R}f(s, \boldsymbol{\theta}) g(s, \boldsymbol{\theta}) d\boldsymbol{\theta} ds \\
=&\ \int_{\mathbb{R}}\int_{S^{n-1}} \int_{\mathbb{R}}f(s\boldsymbol{\theta} + t\boldsymbol{\theta}^{\perp})dt g(s, \boldsymbol{\theta}) d\boldsymbol{\theta} ds \\
=&\ \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{S^{n-1}} f(s\boldsymbol{\theta} + t\boldsymbol{\theta}^{\perp}) g(s, \boldsymbol{\theta}) d\boldsymbol{\theta} ds dt
\end{align*}
⟨ R f , g ⟩ L 2 ( Z n ) = = = ∫ R ∫ S n − 1 R f ( s , θ ) g ( s , θ ) d θ d s ∫ R ∫ S n − 1 ∫ R f ( s θ + t θ ⊥ ) d t g ( s , θ ) d θ d s ∫ R ∫ R ∫ S n − 1 f ( s θ + t θ ⊥ ) g ( s , θ ) d θ d s d t
Substituting with s θ + t θ ⊥ = x s \boldsymbol{\theta} + t \boldsymbol{\theta}^{\perp} = \mathbf{x} s θ + t θ ⊥ = x , we get s = x ⋅ θ s = \mathbf{x} \cdot \boldsymbol{\theta} s = x ⋅ θ , and the following holds.
⟨ R f , g ⟩ L 2 ( Z n ) = ∫ R n ∫ S n − 1 f ( x ) g ( x ⋅ θ , θ ) d θ d x = ∫ R n f ( x ) ( ∫ S n − 1 g ( x ⋅ θ , θ ) d θ ) d x = ⟨ f , ( ∫ S n − 1 g ( ⟨ ⋅ , θ ⟩ , θ ) d θ ) ⟩ L 2 ( R n )
\begin{align*}
\left\langle \mathcal{R}f ,g \right\rangle_{L^{2}(Z_{n})}
=&\ \int_{\mathbb{R}^{n}}\int_{S^{n-1}} f(\mathbf{x}) g(\mathbf{x} \cdot \boldsymbol{\theta}, \boldsymbol{\theta}) d\boldsymbol{\theta} d \mathbf{x} \\
=&\ \int_{\mathbb{R}^{n}} f(\mathbf{x}) \left( \int_{S^{n-1}} g(\mathbf{x} \cdot \boldsymbol{\theta}, \boldsymbol{\theta}) d\boldsymbol{\theta} \right) d \mathbf{x} \\
=&\ \left\langle f, \left( \int_{S^{n-1}} g(\left\langle \cdot, \boldsymbol{\theta} \right\rangle, \boldsymbol{\theta}) d\boldsymbol{\theta} \right) \right\rangle_{L^{2}(\mathbb{R}^{n})}
\end{align*}
⟨ R f , g ⟩ L 2 ( Z n ) = = = ∫ R n ∫ S n − 1 f ( x ) g ( x ⋅ θ , θ ) d θ d x ∫ R n f ( x ) ( ∫ S n − 1 g ( x ⋅ θ , θ ) d θ ) d x ⟨ f , ( ∫ S n − 1 g ( ⟨ ⋅ , θ ⟩ , θ ) d θ ) ⟩ L 2 ( R n )
Therefore,
R # g ( x ) = ∫ S n − 1 g ( x ⋅ θ , θ ) d θ
\mathcal{R}^{\#} g (\mathbf{x}) = \int_{S^{n-1}} g (\mathbf{x} \cdot \boldsymbol{\theta}, \boldsymbol{\theta}) d\boldsymbol{\theta}
R # g ( x ) = ∫ S n − 1 g ( x ⋅ θ , θ ) d θ
■
R # R f ( x ) = ∫ S n − 1 R f ( x ⋅ θ , θ ) d θ = ∫ S n − 1 ∫ y ⋅ θ = 0 f ( ( x ⋅ θ ) θ + y ) d y d θ
\begin{align*}
\mathcal{R}^{\#} \mathcal{R} f(\mathbf{x})
=&\ \int\limits_{S^{n-1}} \mathcal{R}f(\mathbf{x} \cdot \boldsymbol{\theta}, \boldsymbol{\theta}) d \boldsymbol{\theta} \\
=&\ \int\limits_{S^{n-1}} \int\limits_{\mathbf{y} \cdot \boldsymbol{\theta} = 0} f\big((\mathbf{x} \cdot \boldsymbol{\theta})\boldsymbol{\theta} + \mathbf{y} \big) d \mathbf{y} d \boldsymbol{\theta} \\
\end{align*}
R # R f ( x ) = = S n − 1 ∫ R f ( x ⋅ θ , θ ) d θ S n − 1 ∫ y ⋅ θ = 0 ∫ f ( ( x ⋅ θ ) θ + y ) d y d θ
Here, ( x ⋅ θ ) θ = x − ( x ⋅ θ ⊥ ) θ ⊥ (\mathbf{x} \cdot \boldsymbol{\theta})\boldsymbol{\theta} = \mathbf{x} - (\mathbf{x} \cdot \boldsymbol{\theta}^{\perp})\boldsymbol{\theta}^{\perp} ( x ⋅ θ ) θ = x − ( x ⋅ θ ⊥ ) θ ⊥ , and since the second term is included in y \mathbf{y} y which is y ⋅ θ = 0 \mathbf{y} \cdot \boldsymbol{\theta} = 0 y ⋅ θ = 0 , the integral is as follows.
R # R f ( x ) = ∫ S n − 1 ∫ y ⋅ θ = 0 f ( x + y ) d y d θ
\mathcal{R}^{\#} \mathcal{R} f(\mathbf{x})
=\ \int\limits_{S^{n-1}} \int\limits_{\mathbf{y} \cdot \boldsymbol{\theta} = 0} f(\mathbf{x} + \mathbf{y} ) d \mathbf{y} d \boldsymbol{\theta}
R # R f ( x ) = S n − 1 ∫ y ⋅ θ = 0 ∫ f ( x + y ) d y d θ
Auxiliary Theorem
∫ S n − 1 ∫ y ⋅ θ = 0 f ( x + y ) d y d θ = ∣ S n − 2 ∣ ∫ R n f ( y ) ∣ x − y ∣ d y
\int \limits_{S^{n-1}} \int \limits_{\mathbf{y} \cdot \boldsymbol{\theta} = 0} f(\mathbf{x} + \mathbf{y}) d \mathbf{y} d \boldsymbol{\theta} = \left| S^{n-2} \right| \int \limits_{\mathbb{R}^{n}} \dfrac{f(\mathbf{y})}{\left| \mathbf{x} - \mathbf{y} \right|}d \mathbf{y}
S n − 1 ∫ y ⋅ θ = 0 ∫ f ( x + y ) d y d θ = S n − 2 R n ∫ ∣ x − y ∣ f ( y ) d y
Then, by the auxiliary theorem,
R # R f ( x ) = ∣ S n − 2 ∣ ∫ R n f ( y ) ∣ x − y ∣ d y = ∣ S n − 2 ∣ 1 ∣ x ∣ ∗ f
\mathcal{R}^{\#} \mathcal{R} f(\mathbf{x}) = \left| S^{n-2} \right| \int \limits_{\mathbb{R}^{n}} \dfrac{f(\mathbf{y})}{\left| \mathbf{x} - \mathbf{y} \right|}d \mathbf{y} = \left| S^{n-2} \right| \dfrac{1}{\left| \mathbf{x} \right|} \ast f
R # R f ( x ) = S n − 2 R n ∫ ∣ x − y ∣ f ( y ) d y = S n − 2 ∣ x ∣ 1 ∗ f
■