logo

Convergence of Mollification 📂Partial Differential Equations

Convergence of Mollification

Theorem

Let’s assume the following holds for a Mollifier ηϵ\eta_{\epsilon}.

  • α=0ηϵ(x)dx\displaystyle \alpha= \int_{-\infty}^{0} \eta_{\epsilon}(x) dx
  • β=0ηϵ(x)dx\displaystyle \beta=\int_{0}^{\infty} \eta_{\epsilon} (x) dx
  • Let’s say α+β=1\alpha + \beta = 1.

And say ff is piecewise continuous and bounded. Then, the mollification of ff converges as follows.

limϵ0fηϵ(x)=αf(x+)+βf(x) \lim \limits_{\epsilon \rightarrow 0} f \ast \eta_{\epsilon}(x) = \alpha f(x+) + \beta f(x-)

If ηϵ(x)\eta_{\epsilon}(x) is an even function,

limϵ0fηϵ(x)=12[f(x+)+f(x)] \lim \limits_{\epsilon \rightarrow 0} f \ast \eta_{\epsilon}(x) = \dfrac{1}{2} \big[ f(x+) + f(x-) \big]

Furthermore, if ff is a continuous function,

limϵ0fηϵ(x)=f(x) \lim \limits_{\epsilon \rightarrow 0} f \ast \eta_{\epsilon}(x) = f(x)

Explanation

Even if ff is not sufficiently smooth, the mollification of ff becomes a smooth function that converges to ff.

  • Auxiliary theorem

    abηϵ(x)dx=a/ϵb/ϵη(x)dx \int_{a}^b \eta_{\epsilon}(x)dx=\int_{a/\epsilon}^{b/\epsilon}\eta (x)dx

Proof

As a corollary

It holds by the Convolution Convergence Theorem.

By direct calculation

Given the assumptions, the following holds.

fηϵ(x)αf(x+)βf(x)=f(xy)ηϵ(y)dy0f(x+)ηϵ(y)dy0f(x)ηϵ(y)dy=0[f(xy)f(x+)]ηϵ(y)dy0[f(xy)f(x)]ηϵ(y)dy \begin{align*} f \ast\eta_{\epsilon}(x) -\alpha f(x+)-\beta f(x-) &= \int_{-\infty}^{\infty} f(x-y)\eta_{\epsilon}(y)dy - \int_{-\infty}^{0} f(x+)\eta_{\epsilon}(y)dy - \int_{0}^{\infty} f(x-)\eta_{\epsilon}(y)dy \\ &= \int_{-\infty}^{0} \big[ f(x-y) -f(x+) \big] \eta_{\epsilon}(y)dy - \int_{0}^{\infty} \big[ f(x-y) - f(x-)\big] \eta_{\epsilon}(y)dy \end{align*}

First, let’s demonstrate that the second term’s integral converges to 00. Given δ>0\delta >0 and let’s say N=ηϵ(y)dyN=\int |\eta_{\epsilon}(y) | dy. Then, for every 0<y<c0<y<c, one can choose sufficiently small cc to satisfy the following equation.

f(xy)f(x)<δ2Nwhen 0<y<c |f(x-y)-f(x-)| < \dfrac{\delta}{2N} \quad \mathrm{when}\ 0<y<c

Then, think of splitting the integral into 0=0c+c\displaystyle \int_{0}^{\infty}=\int_{0}^{c} +\int_{c}^{\infty}. Looking at 0c\int_{0}^{c} first, by the above inequality, the following holds.

0c[f(xy)f(x)]ηϵ(y)dyδ2N0cηϵ(y)dy=δ2NN=δ2 \begin{align*} \left| \int_{0} ^{c} \big[ f(x-y)-f(x-) \big] \eta_{\epsilon}(y)dy \right| &\le \dfrac{\delta}{2N}\int_{0}^{c}|\eta_{\epsilon}(y)|dy \\ &= \dfrac{\delta}{2N}N \\ &=\dfrac{\delta}{2} \end{align*}

Now, since ff is bounded, let’s say f(x)M f(x) \le M. Since η(y)dy=1<\int | \eta (y)|dy=1<\infty, there exists a positive number R>0R>0 that satisfies the following equation.

Rη(y)dy<δ4Mfor R>R \int_{R^{\prime}}^{\infty}|\eta (y)|dy < \dfrac{\delta}{4M} \quad \mathrm{for}\ R^{\prime}>R

Let’s say ϵ<c/R\epsilon < c/R. Then, since R<c/ϵR< c/\epsilon, c/ϵη(y)dy<δ4M\int_{c/\epsilon}^{\infty} |\eta (y)|dy <\frac{\delta}{4M}. Therefore, the following holds.

c[f(xy)f(x)]ηϵ(y)dy2Mcηϵ(y)dy=2Mc/ϵη(y)dy2Mδ4M=δ2 \begin{align*} \left| \int_{c}^{\infty} \big[ f(x-y)-f(x-) \big] \eta_{\epsilon}(y)dy \right| &\le 2M \int _{c}^{\infty} | \eta_{\epsilon}(y) | dy \\ &= 2M \int _{c/\epsilon}^{\infty} | \eta (y) | dy \\ &\le 2M\dfrac{\delta}{4M} \\ &= \dfrac{\delta}{2} \end{align*}

Combining the two results, we obtain the following.

0[f(xy)f(x)]ηϵ(y)dy<δ \left| \int_{0}^{\infty} \big[ f(x-y)-f(x-)\big]\eta_{\epsilon}(y)dy \right|<\delta

Since δ\delta is any positive number, the value of the above equation is 00. The case of 0\displaystyle \int_{-\infty}^{0} can also be proven in the same way. Therefore, we obtain the following.

limϵ0fηϵ(x)αf(x+)βf(x)=0    limϵ0fηϵ(x)=αf(x+)+βf(x) \begin{align*} && \lim \limits_{\epsilon \rightarrow 0} f \ast \eta_{\epsilon}(x) -\alpha f(x+)-\beta f(x-) &= 0 \\ \implies && \lim \limits_{\epsilon \rightarrow 0} f \ast \eta_{\epsilon}(x) &=\alpha f(x+)+\beta f(x-) \end{align*}

If the mollifier η(x)\eta (x) is an even function, obviously since α=β=12\alpha=\beta=\frac{1}{2}, the following holds.

limϵ0fηϵ(x)=12[f(x+)+f(x)] \lim \limits_{\epsilon \rightarrow 0} f \ast \eta_{\epsilon}(x) = \dfrac{1}{2} \big[ f(x+) + f(x-) \big]

Furthermore, when f(x)f(x) is continuous, in the same way,

fηϵ(x)f(x)<δ f \ast\eta_{\epsilon}(x)-f(x) <\delta

can be demonstrated, ultimately showing that limϵ0fηϵ(x)=f(x)\lim \limits_{\epsilon \rightarrow 0} f \ast \eta_{\epsilon}(x)=f(x).