Convergence of Mollification
📂Partial Differential Equations Convergence of Mollification Theorem Let’s assume the following holds for a Mollifier η ϵ \eta_{\epsilon} η ϵ .
α = ∫ − ∞ 0 η ϵ ( x ) d x \displaystyle \alpha= \int_{-\infty}^{0} \eta_{\epsilon}(x) dx α = ∫ − ∞ 0 η ϵ ( x ) d x β = ∫ 0 ∞ η ϵ ( x ) d x \displaystyle \beta=\int_{0}^{\infty} \eta_{\epsilon} (x) dx β = ∫ 0 ∞ η ϵ ( x ) d x Let’s say α + β = 1 \alpha + \beta = 1 α + β = 1 . And say f f f is piecewise continuous and bounded. Then, the mollification of f f f converges as follows.
lim ϵ → 0 f ∗ η ϵ ( x ) = α f ( x + ) + β f ( x − )
\lim \limits_{\epsilon \rightarrow 0} f \ast \eta_{\epsilon}(x) = \alpha f(x+) + \beta f(x-)
ϵ → 0 lim f ∗ η ϵ ( x ) = α f ( x + ) + β f ( x − )
If η ϵ ( x ) \eta_{\epsilon}(x) η ϵ ( x ) is an even function,
lim ϵ → 0 f ∗ η ϵ ( x ) = 1 2 [ f ( x + ) + f ( x − ) ]
\lim \limits_{\epsilon \rightarrow 0} f \ast \eta_{\epsilon}(x) = \dfrac{1}{2} \big[ f(x+) + f(x-) \big]
ϵ → 0 lim f ∗ η ϵ ( x ) = 2 1 [ f ( x + ) + f ( x − ) ]
Furthermore, if f f f is a continuous function,
lim ϵ → 0 f ∗ η ϵ ( x ) = f ( x )
\lim \limits_{\epsilon \rightarrow 0} f \ast \eta_{\epsilon}(x) = f(x)
ϵ → 0 lim f ∗ η ϵ ( x ) = f ( x )
Explanation Even if f f f is not sufficiently smooth, the mollification of f f f becomes a smooth function that converges to f f f .
Proof As a corollary It holds by the Convolution Convergence Theorem .
■
By direct calculation Given the assumptions, the following holds.
f ∗ η ϵ ( x ) − α f ( x + ) − β f ( x − ) = ∫ − ∞ ∞ f ( x − y ) η ϵ ( y ) d y − ∫ − ∞ 0 f ( x + ) η ϵ ( y ) d y − ∫ 0 ∞ f ( x − ) η ϵ ( y ) d y = ∫ − ∞ 0 [ f ( x − y ) − f ( x + ) ] η ϵ ( y ) d y − ∫ 0 ∞ [ f ( x − y ) − f ( x − ) ] η ϵ ( y ) d y
\begin{align*}
f \ast\eta_{\epsilon}(x) -\alpha f(x+)-\beta f(x-) &= \int_{-\infty}^{\infty} f(x-y)\eta_{\epsilon}(y)dy - \int_{-\infty}^{0} f(x+)\eta_{\epsilon}(y)dy - \int_{0}^{\infty} f(x-)\eta_{\epsilon}(y)dy
\\ &= \int_{-\infty}^{0} \big[ f(x-y) -f(x+) \big] \eta_{\epsilon}(y)dy - \int_{0}^{\infty} \big[ f(x-y) - f(x-)\big] \eta_{\epsilon}(y)dy
\end{align*}
f ∗ η ϵ ( x ) − α f ( x + ) − β f ( x − ) = ∫ − ∞ ∞ f ( x − y ) η ϵ ( y ) d y − ∫ − ∞ 0 f ( x + ) η ϵ ( y ) d y − ∫ 0 ∞ f ( x − ) η ϵ ( y ) d y = ∫ − ∞ 0 [ f ( x − y ) − f ( x + ) ] η ϵ ( y ) d y − ∫ 0 ∞ [ f ( x − y ) − f ( x − ) ] η ϵ ( y ) d y
First, let’s demonstrate that the second term’s integral converges to 0 0 0 . Given δ > 0 \delta >0 δ > 0 and let’s say N = ∫ ∣ η ϵ ( y ) ∣ d y N=\int |\eta_{\epsilon}(y) | dy N = ∫ ∣ η ϵ ( y ) ∣ d y . Then, for every 0 < y < c 0<y<c 0 < y < c , one can choose sufficiently small c c c to satisfy the following equation.
∣ f ( x − y ) − f ( x − ) ∣ < δ 2 N w h e n 0 < y < c
|f(x-y)-f(x-)| < \dfrac{\delta}{2N} \quad \mathrm{when}\ 0<y<c
∣ f ( x − y ) − f ( x − ) ∣ < 2 N δ when 0 < y < c
Then, think of splitting the integral into ∫ 0 ∞ = ∫ 0 c + ∫ c ∞ \displaystyle \int_{0}^{\infty}=\int_{0}^{c} +\int_{c}^{\infty} ∫ 0 ∞ = ∫ 0 c + ∫ c ∞ . Looking at ∫ 0 c \int_{0}^{c} ∫ 0 c first, by the above inequality, the following holds.
∣ ∫ 0 c [ f ( x − y ) − f ( x − ) ] η ϵ ( y ) d y ∣ ≤ δ 2 N ∫ 0 c ∣ η ϵ ( y ) ∣ d y = δ 2 N N = δ 2
\begin{align*}
\left| \int_{0} ^{c} \big[ f(x-y)-f(x-) \big] \eta_{\epsilon}(y)dy \right| &\le \dfrac{\delta}{2N}\int_{0}^{c}|\eta_{\epsilon}(y)|dy
\\ &= \dfrac{\delta}{2N}N
\\ &=\dfrac{\delta}{2}
\end{align*}
∫ 0 c [ f ( x − y ) − f ( x − ) ] η ϵ ( y ) d y ≤ 2 N δ ∫ 0 c ∣ η ϵ ( y ) ∣ d y = 2 N δ N = 2 δ
Now, since f f f is bounded, let’s say f ( x ) ≤ M f(x) \le M f ( x ) ≤ M . Since ∫ ∣ η ( y ) ∣ d y = 1 < ∞ \int | \eta (y)|dy=1<\infty ∫ ∣ η ( y ) ∣ d y = 1 < ∞ , there exists a positive number R > 0 R>0 R > 0 that satisfies the following equation.
∫ R ′ ∞ ∣ η ( y ) ∣ d y < δ 4 M f o r R ′ > R
\int_{R^{\prime}}^{\infty}|\eta (y)|dy < \dfrac{\delta}{4M} \quad \mathrm{for}\ R^{\prime}>R
∫ R ′ ∞ ∣ η ( y ) ∣ d y < 4 M δ for R ′ > R
Let’s say ϵ < c / R \epsilon < c/R ϵ < c / R . Then, since R < c / ϵ R< c/\epsilon R < c / ϵ , ∫ c / ϵ ∞ ∣ η ( y ) ∣ d y < δ 4 M \int_{c/\epsilon}^{\infty} |\eta (y)|dy <\frac{\delta}{4M} ∫ c / ϵ ∞ ∣ η ( y ) ∣ d y < 4 M δ . Therefore, the following holds.
∣ ∫ c ∞ [ f ( x − y ) − f ( x − ) ] η ϵ ( y ) d y ∣ ≤ 2 M ∫ c ∞ ∣ η ϵ ( y ) ∣ d y = 2 M ∫ c / ϵ ∞ ∣ η ( y ) ∣ d y ≤ 2 M δ 4 M = δ 2
\begin{align*}
\left| \int_{c}^{\infty} \big[ f(x-y)-f(x-) \big] \eta_{\epsilon}(y)dy \right| &\le 2M \int _{c}^{\infty} | \eta_{\epsilon}(y) | dy
\\ &= 2M \int _{c/\epsilon}^{\infty} | \eta (y) | dy
\\ &\le 2M\dfrac{\delta}{4M}
\\ &= \dfrac{\delta}{2}
\end{align*}
∫ c ∞ [ f ( x − y ) − f ( x − ) ] η ϵ ( y ) d y ≤ 2 M ∫ c ∞ ∣ η ϵ ( y ) ∣ d y = 2 M ∫ c / ϵ ∞ ∣ η ( y ) ∣ d y ≤ 2 M 4 M δ = 2 δ
Combining the two results, we obtain the following.
∣ ∫ 0 ∞ [ f ( x − y ) − f ( x − ) ] η ϵ ( y ) d y ∣ < δ
\left| \int_{0}^{\infty} \big[ f(x-y)-f(x-)\big]\eta_{\epsilon}(y)dy \right|<\delta
∫ 0 ∞ [ f ( x − y ) − f ( x − ) ] η ϵ ( y ) d y < δ
Since δ \delta δ is any positive number, the value of the above equation is 0 0 0 . The case of ∫ − ∞ 0 \displaystyle \int_{-\infty}^{0} ∫ − ∞ 0 can also be proven in the same way. Therefore, we obtain the following.
lim ϵ → 0 f ∗ η ϵ ( x ) − α f ( x + ) − β f ( x − ) = 0 ⟹ lim ϵ → 0 f ∗ η ϵ ( x ) = α f ( x + ) + β f ( x − )
\begin{align*}
&& \lim \limits_{\epsilon \rightarrow 0} f \ast \eta_{\epsilon}(x) -\alpha f(x+)-\beta f(x-) &= 0 \\
\implies && \lim \limits_{\epsilon \rightarrow 0} f \ast \eta_{\epsilon}(x) &=\alpha f(x+)+\beta f(x-)
\end{align*}
⟹ ϵ → 0 lim f ∗ η ϵ ( x ) − α f ( x + ) − β f ( x − ) ϵ → 0 lim f ∗ η ϵ ( x ) = 0 = α f ( x + ) + β f ( x − )
If the mollifier η ( x ) \eta (x) η ( x ) is an even function, obviously since α = β = 1 2 \alpha=\beta=\frac{1}{2} α = β = 2 1 , the following holds.
lim ϵ → 0 f ∗ η ϵ ( x ) = 1 2 [ f ( x + ) + f ( x − ) ]
\lim \limits_{\epsilon \rightarrow 0} f \ast \eta_{\epsilon}(x) = \dfrac{1}{2} \big[ f(x+) + f(x-) \big]
ϵ → 0 lim f ∗ η ϵ ( x ) = 2 1 [ f ( x + ) + f ( x − ) ]
Furthermore, when f ( x ) f(x) f ( x ) is continuous, in the same way,
f ∗ η ϵ ( x ) − f ( x ) < δ
f \ast\eta_{\epsilon}(x)-f(x) <\delta
f ∗ η ϵ ( x ) − f ( x ) < δ
can be demonstrated, ultimately showing that lim ϵ → 0 f ∗ η ϵ ( x ) = f ( x ) \lim \limits_{\epsilon \rightarrow 0} f \ast \eta_{\epsilon}(x)=f(x) ϵ → 0 lim f ∗ η ϵ ( x ) = f ( x ) .
■