logo

Exponential Function Set and Trigonometric Function Set are Orthogonal Bases 📂Fourier Analysis

Exponential Function Set and Trigonometric Function Set are Orthogonal Bases

Theorem

Both sets {einx}n=\left\{ e^{inx} \right\}_{n=-\infty}^\infty and {cosnx }n=0{sinnx}n=1\left\{ \cos nx\ \right\}_{n=0}^\infty \cup \left\{ \sin nx \right\}_{n=1}^\infty are the orthonormal bases of L2(π, π)L^{2}(-\pi,\ \pi). Furthermore, {cosnx}n=0\left\{ \cos nx \right\}_{n=0}^{\infty} and {sinnx}n=1\left\{ \sin nx \right\}_{n=1}^{\infty} are the orthonormal bases of L2(0, π)L^{2}(0,\ \pi).

Explanation

This fact explains the reason why it is valid to express a given function as a series of trigonometric functions in Fourier series.

Proof

Let ϕn(x)=einx\phi_{n}(x)=e^{inx}. And assume fL2(π, π)f \in L^{2}(-\pi,\ \pi) and ϵ\epsilon to be a very small arbitrary positive number.

Lemma

For any fL2(a, b)f \in L^{2}(a,\ b), there exists a sequence of smooth functions {fn}\left\{ f_{n} \right\} that satisfies fnf0| f_{n} - f | \rightarrow 0 on [a, b][a,\ b].

Then, according to the lemma, there exists f~\tilde{f} that satisfies the following equation.

ff~<ϵ3 \begin{equation} | f-\tilde{f} | < \frac{\epsilon}{3} \label{eq1} \end{equation}

Let’s say cn=12πf, ϕnc_{n}=\frac{1}{2\pi}\langle f,\ \phi_{n} \rangle and c~n=12πf~, ϕn\tilde{c}_{n}=\frac{1}{2\pi}\langle \tilde{f},\ \phi_{n} \rangle are the Fourier coefficients of ff and f~\tilde{f}. Then, the Fourier series of f~\tilde{f}, c~nϕn\sum \tilde{c}_{n}\phi_{n}, converges uniformly to f~\tilde{f}, and since it converges uniformly, it converges in norm. Hence, the following equation holds.

f~NNc~nϕn<ϵ3 \begin{equation} \left\| \tilde{f} -\sum \limits_{-N}^{N} \tilde{c}_{n}\phi_{n} \right\| < \dfrac{\epsilon}{3} \label{eq2} \end{equation}

And the following equation holds.

NNc~nϕnNNcnϕn2=NN(c~ncn)ϕn2=NNc~ncn2ϕn2=NN12πf~f, ϕn2ϕn2=NN12πf~f, ϕn212πf~f, ϕn2f~f2<(ϵ3)2 \begin{align} \left\| \sum\limits_{-N}^{N}\tilde{c}_{n}\phi_{n} - \sum\limits_{-N}^{N}c_{n}\phi_{n}\right\| ^{2} &= \left\| \sum\limits_{-N}^{N} (\tilde{c}_{n}-c_{n}) \phi_{n} \right\| ^{2} \nonumber \\ &= \sum \limits_{-N}^{N} | \tilde{c}_{n} -c_{n} |^{2} | \phi_{n} |^{2} \nonumber \\ &= \sum \limits_{-N}^{N} \dfrac{1}{2\pi} | \langle \tilde{f}-f,\ \phi_{n} \rangle |^{2} | \phi_{n}|^{2} \nonumber \\ &= \sum \limits_{-N}^{N} \dfrac{1}{2\pi} | \langle \tilde{f}-f,\ \phi_{n} \rangle |^{2} \nonumber \\ &\le \sum \limits_{-\infty}^{\infty} \dfrac{1}{2\pi} | \langle \tilde{f}-f,\ \phi_{n} \rangle |^{2} \nonumber \\ &\le | \tilde{f} - f | ^{2} \nonumber \\ &< \left( \dfrac{\epsilon}{3} \right)^{2} \label{eq3} \end{align}

The fourth equality holds because of ϕn=1 | \phi_{n} |=1. The sixth line holds due to the Bessel’s inequality. The last line holds due to the assumption (eq1)\eqref{eq1}. Now, using (1)(1), (2)(2), (3)(3), we show that fcnϕn0| f -\sum c_{n}\phi_{n} | \rightarrow 0, and the proof is complete.

fNNcnϕn=(ff~)+(f~NNc~nϕn)+(NNc~nϕnNNcnϕn) f-\sum \limits_{-N}^{N}c_{n}\phi_{n} = (f-\tilde{f}) + \left( \tilde{f} -\sum _{-N}^{N} \tilde{c}_{n}\phi_{n} \right) + \left( \sum _{-N}^{N} \tilde{c}_{n}\phi_{n} - \sum _{-N}^{N}c_{n}\phi_{n}\right)

Since the above equation holds, by the triangle inequality,

fNNcnϕnff~+f~NNc~nϕn+NNc~nϕnNNcnϕn=ϵ3+ϵ3+ϵ3=ϵ \begin{align*} \left\| f-\sum\limits_{-N}^{N}c_{n}\phi_{n} \right\| &\le \| f-\tilde{f} \| + \left\| \tilde{f} -\sum _{-N}^{N} \tilde{c}_{n}\phi_{n} \right\| + \left\| \sum _{-N}^{N} \tilde{c}_{n}\phi_{n} - \sum _{-N}^{N}c_{n}\phi_{n} \right\| \\ &= \dfrac{\epsilon}{3} + \dfrac{\epsilon}{3} + \dfrac{\epsilon}{3} \\ &= \epsilon \end{align*}

Therefore,

fcnϕn0 \left\| f- \sum \limits_{-\infty}^{\infty} c_{n}\phi_{n} \right\| \rightarrow 0

And according to condition (b), {ϕn}\left\{ \phi_{n} \right\} is a complete orthonormal set.

The rest of the cases are essentially the same or can be proven by almost the same process, so they are omitted.