logo

Riemann-Lebesgue Lemma 📂Fourier Analysis

Riemann-Lebesgue Lemma

Theorem1

Let’s assume ff \in L1L^{1} is given. Then, the following equation holds.

limn±f^(ξ)=0 \lim \limits_{n \to \pm \infty} \hat{f}(\xi) = 0

Here, f^\hat{f} is the Fourier transform of ff.

Proof

step 1 Proofs for the step function ff, and generalization in step 2. Note that ff in step 1 and step 2 are not the same.

  • case 1

    Assume ff is the following step function.

    f(x)=j=1ncjχj(x) f(x) = \sum \limits_{j=1}^n c_{j} \chi_{j}(x)

    cjc_{j} is a constant and χj(x)=χ[xjaj, xj+aj](x)\chi_{j}(x)=\chi_{ [-x_{j}-a_{j} ,\ x_{j}+a_{j}] }(x). Using F[f(xa)](ξ)=eiaξf^(ξ)\mathcal{F} \left[ f(x-a) \right] ( \xi ) = e^{-ia\xi}\hat{f}(\xi), χ[xjaj, xj+aj](x)=χ[aj, aj](xxj)\chi_{[-x_{j} - a_{j},\ x_{j} + a_{j}]}(x)=\chi_{[-a_{j} ,\ a_{j}]}(x-x_{j}), and F[χ[a,a](x)]=2sin(aξ)ξ\mathcal{F} \left[ \chi_{[-a,a]}(x) \right] = \dfrac{2 \sin(a\xi) }{\xi} here,

    F[χ[xjaj, xj+aj](x)](ξ)=F[χ[aj, aj](xxj)](ξ)=eiξxjF[χ[aj, aj](x)](ξ)=eiξxj2sin(ajξ)ξ \begin{align*} \mathcal{F}\left[ \chi_{[-x_{j}-a_{j} ,\ x_{j}+a_{j}]} (x)\right] (\xi) &= \mathcal{F}\left[ \chi_{ [-a_{j} ,\ a_{j}]} (x-x_{j})\right] (\xi) \\ &= e^{-i\xi x_{j}} \mathcal{F} \left[ \chi_{[-a_{j},\ a_{j}]}(x)\right] (\xi) \\ &= e^{-i\xi x_{j}}\dfrac{2\sin (a_{j}\xi) }{\xi} \end{align*}

    Therefore, the Fourier transform of ff is

    f^(ξ)=j=1n2cjeiξxjsin(ajξ)ξ0as  ξ± \hat{f} (\xi) = \sum \limits_{j=1}^n2 c_{j}e^{-i\xi x_{j}} \dfrac{ \sin (a_{j} \xi) }{\xi} \rightarrow 0 \quad \mathrm{as}\ \ \xi \rightarrow \pm \infty

  • step 2

    Assume fL1f \in L^{1}. Then, there exists a sequence of step functions {fn}\left\{ f_{n} \right\} that satisfy the following equation.

    fn(x)f(x)dx0 \int |f_{n}(x) -f(x)| dx \rightarrow 0

    Using this,

    supξfn^(ξ)f^(ξ)=supξ(fn(x)f(x))eiξxdxsupξfn(x)f(x)dx0 \begin{align*} \sup \limits_{\xi}| \hat{f_{n}}(\xi) - \hat{f}(\xi)| &= \sup \limits_{\xi} \left| \int \big( f_{n}(x)-f(x) \big) e^{-i\xi x} dx \right| \\ &\le \sup \limits_{\xi} \int \left| f_{n}(x)-f(x) \right| dx \rightarrow 0 \end{align*}

    Therefore, fn^(ξ)\hat{f_{n}}(\xi) uniformly converges to f^(ξ)\hat{f}(\xi). And from the result of step 1,

    f^(ξ)0as  ξ± \hat{f}(\xi) \rightarrow 0 \quad \mathrm{as} \ \ \xi \rightarrow \pm \infty


  1. Gerald B. Folland, Fourier Analysis and Its Applications (1992), p217 ↩︎