Riemann-Lebesgue Lemma
📂Fourier AnalysisRiemann-Lebesgue Lemma
Theorem
Let’s assume f∈ L1 is given. Then, the following equation holds.
n→±∞limf^(ξ)=0
Here, f^ is the Fourier transform of f.
Proof
step 1 Proofs for the step function f, and generalization in step 2. Note that f in step 1 and step 2 are not the same.
case 1
Assume f is the following step function.
f(x)=j=1∑ncjχj(x)
cj is a constant and χj(x)=χ[−xj−aj, xj+aj](x). Using F[f(x−a)](ξ)=e−iaξf^(ξ), χ[−xj−aj, xj+aj](x)=χ[−aj, aj](x−xj), and F[χ[−a,a](x)]=ξ2sin(aξ) here,
F[χ[−xj−aj, xj+aj](x)](ξ)=F[χ[−aj, aj](x−xj)](ξ)=e−iξxjF[χ[−aj, aj](x)](ξ)=e−iξxjξ2sin(ajξ)
Therefore, the Fourier transform of f is
f^(ξ)=j=1∑n2cje−iξxjξsin(ajξ)→0as ξ→±∞
step 2
Assume f∈L1. Then, there exists a sequence of step functions {fn} that satisfy the following equation.
∫∣fn(x)−f(x)∣dx→0
Using this,
ξsup∣fn^(ξ)−f^(ξ)∣=ξsup∫(fn(x)−f(x))e−iξxdx≤ξsup∫∣fn(x)−f(x)∣dx→0
Therefore, fn^(ξ) uniformly converges to f^(ξ). And from the result of step 1,
f^(ξ)→0as ξ→±∞
■