logo

Binomial Series Derivation 📂Analysis

Binomial Series Derivation

Formulas

x<1|x| < 1 implies αC\alpha \in \mathbb{C}, then (1+x)α=k=0(αk)xk=1+αx+α(α1)2!x2+α(α1)(α2)3!x3+ \begin{align*} (1 + x )^{\alpha} =& \sum_{k=0}^{\infty} \binom{\alpha}{k} x^{k} \\ =& 1 + \alpha x + \dfrac{\alpha (\alpha-1)}{2!}x^{2} + \dfrac{\alpha (\alpha-1)(\alpha-2)}{3!}x^{3} + \cdots \end{align*}

Negative Binomial Series

(1x)α=k=0(α+k1k)xk=1+αx+α(α+1)2!x2+α(α+1)(α+2)3!x3+ \begin{align*} (1 - x)^{-\alpha} &= \sum\limits_{k=0}^{\infty} \binom{\alpha + k - 1}{k} x^{k} \\ &= 1 + \alpha x + \dfrac{\alpha(\alpha+1)}{2!} x^{2} + \dfrac{\alpha(\alpha+1)(\alpha+2)}{3!} x^{3} + \cdots \end{align*}

Description

Known as Newton’s binomial theorem, it can be seen as a generalization of binomial expansion to infinity and complex numbers. Meanwhile, using x,yx,y, the familiar form can be simply derived as follows.

(1+yx)α=k=0(αk)(yx)k    xα(x+y)α=k=0(αk)ykxk    (x+y)α=k=0(αk)xαkyk \begin{align*} && \left( 1 + {{y} \over {x}} \right)^{\alpha} =& \sum_{k=0}^{\infty} \binom{\alpha}{k} \left( \dfrac{y}{x} \right)^{k} \\ \implies && x^{-\alpha} \left( x + y \right)^{\alpha} =& \sum_{k=0}^{\infty} \binom{\alpha}{k} y^{k} x^{-k} \\ \implies && \left( x + y \right)^{\alpha} =& \sum_{k=0}^{\infty} \binom{\alpha}{k} x^{\alpha-k} y^{k} \end{align*}

Derivation

Strategy: Create a function g(α)g(\alpha) based on α\alpha and then show that FF is continuous. If a continuous function satisfies g(α+β)=g(α)g(β)g( \alpha + \beta ) = g( \alpha ) g( \beta ), it inherits properties related to the exponential function, leading us to deduce (1+x)α(1 + x)^\alpha on the left side.


Let’s define gg as g(α):=k=0(αk)xkg ( \alpha ) := \sum_{k=0}^{\infty} \binom{\alpha}{k} x^{k}.

limk(αk+1)xk+1(αk)xk=limkαkk+1x=x<1 \lim_{k \to \infty} \left| {{ \binom{\alpha}{k+1} x^{k+1} } \over { \binom{\alpha}{k} x^{k} }} \right| = \lim_{k \to \infty} \left| {{ \alpha - k } \over { k + 1 }} \right| | x | = | x | < 1

By the Ratio Test, FF absolutely and uniformly converges on C\mathbb{C}, and therefore, is continuous on C\mathbb{C}.

Product of Two Power Series: If the convergence interval of f(x):=k=0akxkf(x) : = \sum_{k=0}^{\infty} a_{k} x^{k} and g(x):=k=0bkxkg(x) : = \sum_{k=0}^{\infty} b_{k} x^{k} is (r,r)(-r,r) and ck:=j=0kajbkjc_{k} := \sum_{j=0}^{k} a_{j} b_{k-j}, then k=0ckxk\sum_{k=0}^{\infty} c_{k} x^{k} converges to f(x)g(x)f(x)g(x) on the convergence interval (r,r)(-r,r).

Properties of Binomial Coefficients: j=0k(αkj)(βj)=(α+βk)\sum_{j=0}^{k} \binom{\alpha}{k-j} \binom{\beta}{j} = \binom{\alpha + \beta}{k}

g(α)g(β)=k=0(αk)xkk=0(βk)xk=k=0j=0k(αkj)(βj)xk=k=0(α+βk)xk=g(α+β) \begin{align*} g(\alpha) g(\beta) =& \sum_{k=0}^{\infty} \binom{\alpha}{k} x^{k} \sum_{k=0}^{\infty} \binom{\beta}{k} x^{k} \\ =& \sum_{k=0}^{\infty} \sum_{j=0}^{k} \binom{\alpha}{k-j} \binom{\beta}{j} x^{k} \\ =& \sum_{k=0}^{\infty} \binom{ \alpha + \beta}{k} x^{k} \\ =& g (\alpha + \beta ) \end{align*}

Properties of Continuous Homomorphisms: If continuous function g:R(0,)g : \mathbb{R} \to ( 0 , \infty ) satisfies g(α+β)=g(α)g(β)g(\alpha + \beta) = g(\alpha) g(\beta) for all α,βR\alpha, \beta \in \mathbb{R}, then g(α)=(g(1))αg(\alpha) = \left( g(1) \right)^\alpha

Therefore, g(1)=k=0(1k)=1+xg(1) = \sum_{k=0}^{\infty} \binom{1}{k} = 1 + x

(1+x)α=g(α)=k=0(αk)xk (1 + x )^{\alpha} = g ( \alpha ) = \sum_{k=0}^{\infty} \binom{\alpha}{k} x^{k}