logo

Generalized Binomial Coefficients for Complex Numbers 📂Complex Anaylsis

Generalized Binomial Coefficients for Complex Numbers

Definition

For a complex number αC\alpha \in \mathbb{C}, the following is called a Binomial Coefficient. (αk):={α(α1)(αk+1)k!,kN1,k=0 \binom{\alpha}{k} := \begin{cases} \displaystyle {{ \alpha ( \alpha - 1 ) \cdots ( \alpha - k + 1 ) } \over { k! }} & , k \in \mathbb{N} \\ 1 & ,k=0 \end{cases}

Description

Originally, binomial coefficients have an intuitive meaning only when αN\alpha \in \mathbb{N}, but if we consider just the calculation process, there is no need for it to be natural numbers. It can be extended to negative integers, real numbers, and even complex numbers.

Theorem

j=0k(αkj)(βj)=(α+βk) \sum_{j=0}^{k} \binom{\alpha}{k-j} \binom{\beta}{j} = \binom{\alpha + \beta}{k}

Proof

Strategy: Nothing but mathematical induction and tedious calculations.


If k=0k = 0 then 11=1 1 \cdot 1 = 1 If k=1k = 1 then α1+1β=α+β \alpha \cdot 1 + 1 \cdot \beta = \alpha + \beta Assuming that when k1k \ge 1, j=0k(αkj)(βj)=(α+βk)\displaystyle \sum_{j=0}^{k} \binom{\alpha}{k-j} \binom{\beta}{j} = \binom{\alpha + \beta}{k} holds, (α+βk+1)=(α+βk)α+βkk+1=j=0k(αkj)(βj)(αk+jk+1+βjk+1)=j=0k[kj+1k+1(αkj+1)(βj)+j+1k+1(αkj)(βj+1)]=(αk+1)+j=1k(kj+1k+1+jk+1)(αkj+1)(βj)+(βk+1)=(αk+1)+j=1k(αkj+1)(βj)+(βk+1)=j=0k+1(α(k+1)j)(βj) \begin{align*} \binom{ \alpha + \beta }{ k + 1 } =& \binom{ \alpha + \beta }{ k } {{ \alpha + \beta - k } \over { k + 1 }} \\ =& \sum_{j=0}^{k} \binom{ \alpha }{ k - j } \binom{ \beta }{ j } \left( {{ \alpha - k + j } \over { k + 1 }} + {{ \beta - j } \over { k + 1 }} \right) \\ =& \sum_{j=0}^{k} \left[ {{ k - j + 1 } \over { k + 1 }} \binom{ \alpha }{ k - j + 1 } \binom{ \beta }{ j } + {{ j + 1 } \over { k + 1 }} \binom{ \alpha }{ k - j } \binom{ \beta }{ j + 1 } \right] \\ =& \binom{ \alpha }{ k + 1 } + \sum_{j=1}^{k} \left( {{ k - j + 1 } \over { k + 1 }} + {{ j } \over { k + 1 }} \right) \binom{ \alpha }{ k - j + 1 } \binom{ \beta }{ j } + \binom{ \beta }{ k + 1 } \\ =& \binom{ \alpha }{ k + 1 } + \sum_{j=1}^{k} \binom{ \alpha }{ k - j + 1 } \binom{ \beta }{ j } + \binom{ \beta }{ k + 1 } \\ =& \sum_{j=0}^{k+1} \binom{ \alpha }{ (k + 1) - j } \binom{ \beta }{ j } \end{align*}