logo

Linearization of Boundaries in Nonlinear First-Order Differential Equations 📂Partial Differential Equations

Linearization of Boundaries in Nonlinear First-Order Differential Equations

Buildup

One method to easily solve the characteristic equation of a nonlinear first-order differential equation is to straighten out a small portion, Γ\Gamma, of the boundary, Ω\partial \Omega, of the domain, Ω\Omega. Since this is always possible, in the vicinity of a point x0x^{0} on the boundary, one can assume from the start that the boundary is a straight line and approach the problem. This is called straightening the boundary.

1.JPG

Let ΩRn\Omega \subset \mathbb{R}^{n} be an open set and Ω\partial \Omega be C2C^{2}. Let’s say a partial differential equation FC1(Rn×R×Ωˉ)F \in C^{1}(\mathbb{R}^{n} \times \mathbb{R} \times \bar \Omega) is given. Also, let’s say the following boundary condition is given.

{F(Du, u, x)=0in Ωu=gon Γ \begin{equation} \left\{ \begin{aligned} F(Du,\ u,\ x)&=0 && \text{in } \Omega \\ u&=g && \text{on } \Gamma \end{aligned} \right. \end{equation}

Then ΓΩ\Gamma \subset \partial \Omega and g:ΓRg : \Gamma \to \mathbb{R}.

Explanation

There is a fixed point on the boundary, x0Ωx^{0} \in \partial \Omega. And define the transformation Φ : RnRn\Phi\ :\ \mathbb{R}^{n} \to \mathbb{R}^{n} as follows.

{Φ(Ω):=VΦ(x):=(Φ1(x), ,Φn(x))=(y1, , yn)=y,yVyi=Φi(x):=xi,xRn (i=1,,n1)yn=Φn(x):=xnγ(x1,,xn1),xRn \left\{ \begin{align*} \Phi (\Omega) &:= V \\ \Phi (x) &:= \left( \Phi^{1}(x),\ \cdots, \Phi^{n}(x) \right) = (y_{1},\ \cdots,\ y_{n})=y, \quad y \in V \\ y_{i}=\Phi^{i}(x) &:= x_{i}, \quad x \in \mathbb{R}^{n}\ (i=1,\cdots, n-1) \\ y_{n}=\Phi^{n}(x) &:= x_{n}-\gamma (x_{1},\cdots,x_{n-1}), \quad x \in \mathbb{R}^{n} \end{align*} \right.

That is, Φ\Phi is a transformation that makes the nn-th coordinate of some part of the boundary into 00. This is trivially a bijection by definition. Therefore, an inverse transformation exists, and let’s call it Ψ\Psi.

{lΨ(y):=Φ1(y)Ψi(y)=xi=yi,yRn (i=1,,n1)Ψn(y)=xn=yn+γ(x1,,xn1),xRn \left\{ \begin{align*} {l}\Psi (y) &:= \Phi^{{}-1}(y) \\ \Psi^{i}(y) &= x_{i}=y_{i}, \quad y \in \mathbb{R}^{n}\ (i=1,\cdots, n-1) \\ \Psi^{n}(y) &= x_{n}=y_{n}+\gamma (x_{1},\cdots,x_{n-1}), \quad x \in \mathbb{R}^{n} \end{align*} \right.

When represented in a diagram, it looks like the following.

2.JPG

Now, let’s say ΓΩ\Gamma \subset \partial \Omega is an open set and gC(Γ)g\in C(\Gamma). And let’s say a fixed point x0Γx^{0} \in \Gamma is given. And assume that uC1(Ω)C(Ωˉ)u \in C^{1} (\Omega)\cap C(\bar \Omega) is a solution solving the boundary condition (1)(1). And define vv as below.

v(y):=u(Ψ(y)) yV v(y) := u(\Psi (y)) \quad \forall\ y\in V

In other words, vv is defined to have the same function value in VV as in uu. Then the following holds.

u(x)=v(Φ(x)) xΩ u(x)=v(\Phi (x)) \quad \forall\ x\in \Omega

Now, let’s see how Du,u,xDu, u, x behaves in VV. First, if we calculate uxiu_{x_{i}}, it looks like the following.

uxi(x)=k=1nvyk(Φ(x))Φxik(x) u_{x_{i}}(x)=\sum \limits _{k=1}^{n} v_{y_{k}} \left( \Phi (x) \right) \Phi^{k}_{x_{i}}(x)

Therefore,

Du(x)=(k=1nvyk(Φ(x))Φx1k(x), , k=1nvyk(Φ(x))Φxnk(x))=(vy1Φx11++vynΦx1n, , vy1Φxn1++vynΦxnn)=(vy1vy2vyn)(Φx11Φx21Φxn1Φx12Φx22Φxn2Φx1nΦx2nΦxnn)=Dv(Φ(x))DΦ(x) \begin{align*} Du(x) &= \left( \sum \limits _{k=1}^{n} v_{y_{k}} \left( \Phi (x) \right) \Phi^{k}_{x_{1}}(x),\ \cdots,\ \sum \limits _{k=1}^{n} v_{y_{k}} \left( \Phi (x) \right) \Phi^{k}_{x_{n}}(x) \right) \\ &= (v_{y_{1}}\Phi^{1}_{x_{1}}+\cdots+v_{y_{n}}\Phi^{n}_{x_{1}},\ \cdots ,\ v_{y_{1}}\Phi^{1}_{x_{n}}+\cdots+v_{y_{n}}\Phi^{n}_{x_{n}} ) \\ &= \begin{pmatrix} v_{y_{1}} & v_{y_{2}} & \cdots & v_{y_{n}} \end{pmatrix} \begin{pmatrix} \Phi^{1}_{x_{1}} & \Phi^{1}_{x_{2}} & \cdots &\Phi^{1}_{x_{n}} \\ \Phi^{2}_{x_{1}} & \Phi^{2}_{x_{2}} & \cdots & \Phi^{2}_{x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \Phi^{n}_{x_{1}} & \Phi^{n}_{x_{2}} & \cdots & \Phi^{n}_{x_{n}} \end{pmatrix} \\ &= Dv\left( \Phi (x) \right) D\Phi (x) \end{align*}

Or,

Du(Ψ(y))=Dv(y)DΦ(Ψ(y)) Du(\Psi (y)) = Dv(y) D\Phi (\Psi (y))

Then, the equation of (1)(1) is as follows.

F(Du(Ψ(y)),u(Ψ(y)),Ψ(y))=F(Dv(y)DΦ(Ψ(y)),v(y),Ψ(y))=0 F\Big( Du(\Psi (y) ), u( \Psi (y) ), \Psi (y) \Big) = F\Big( Dv(y)D\Phi (\Psi (y)), v(y), \Psi (y) \Big)=0

Now, let’s define the following nonlinear first-order partial differential equation.

G(q,w,y):=F(qDΦ(Ψ(y)),w,Ψ(y)),(q,w,y)Rn×R×Vˉ G(q, w, y):=F \Big (q D\Phi (\Psi (y) ), w, \Psi (y) \Big), \quad \forall (q, w, y)\in\mathbb{R}^{n}\times\mathbb{R}\times\bar V

Then GC1(Rn×R×Vˉ)G\in C^{1}(\mathbb{R}^{n} \times \mathbb{R} \times \bar V), and from the above results, the following equation holds.

G(Dv(y), v(y), y)=0,yV G \Big( Dv(y),\ v(y),\ y \Big)=0, \quad \forall y\in V

And Δ:=Φ(Γ)\Delta:=\Phi (\Gamma) and let’s define h(y):=g(Φ(y))yΔh(y):=g(\Phi (y)) \quad y \in \Delta. Then Δ\Delta is an open set and ΔV\Delta \subset \partial V. And Δ\Delta is flat in the vicinity of y0y^{0}. In summary, the defined vC1(V)C(Vˉ)v \in C^{1}(V) \cap C(\bar V) is a solution that satisfies the following boundary condition.

{G(Dv, v, y)=0in Vv=hon ΔV \left\{ \begin{align*} G(Dv,\ v,\ y) &= 0 && \text{in } V \\ v &= h && \text{on } \Delta \subset \partial V \end{align*} \right.

This is nothing different from (1)(1) and the assumption that some arbitrarily chosen part of the boundary is flat, and everything else is the same. And since the boundary can always be flattened like this, one can assume from the start that this is the problem and solve it.