Convergence of Norms of Function Sequences
📂Analysis Convergence of Norms of Function Sequences Definitions Suppose a sequence of functions { f n } \left\{ f_{n} \right\} { f n } is given. If ∥ f n − f ∥ \| f_{n} - f \| ∥ f n − f ∥ converges to 0 0 0 , then f n f_{n} f n is said to converge in norm , denoted as follows.
f n → f in norm
f_{n} \to f \text{ in norm }
f n → f in norm
or
∥ f n − f ∥ → 0
\| f_{n} - f\| \to 0
∥ f n − f ∥ → 0
or
lim n → 0 ∥ f n − f ∥ = 0
\lim \limits_{n \to 0} \| f_{n}-f\|=0
n → 0 lim ∥ f n − f ∥ = 0
Explanation To define the limit of a sequence , the concept of distance is necessary . Since distance in a function space is defined by the norm , the convergence of a sequence of functions is defined as above.
The norm of a function is defined by integration , so for f n f_{n} f n to converge in norm to f f f means that the average difference between f n f_{n} f n and f f f over a given interval converges to 0 0 0 .
f n → f i n n o r m ⟺ ∫ a b ∣ f n ( x ) − f ( x ) ∣ 2 d x → 0
f_{n}\rightarrow f\ \ \mathrm{in\ norm}\quad \iff \quad \int_{a}^b\left| f_{n}(x)-f(x) \right|^2 dx \rightarrow 0
f n → f in norm ⟺ ∫ a b ∣ f n ( x ) − f ( x ) ∣ 2 d x → 0
It is important to note that norm convergence and pointwise convergence do not guarantee each other . On the other hand, uniform convergence guarantees norm convergence.
Example Norm convergence does not imply pointwise convergence Consider the interval [ 0 , 1 ] [0,1] [ 0 , 1 ] where f n f_{n} f n is as follows.
f n ( x ) = { 1 0 ≤ x ≤ 1 n 0 1 n < x ≤ 1
f_{n}(x) =\begin{cases} 1 & 0\le x \le \dfrac{1}{n}
\\ 0 &\dfrac{1}{n}<x\le 1\end{cases}
f n ( x ) = ⎩ ⎨ ⎧ 1 0 0 ≤ x ≤ n 1 n 1 < x ≤ 1
Then, it can easily be shown that lim n → ∞ ∥ f n ∥ = 0 \lim \limits_{n \to \infty} \| f_{n} \| = 0 n → ∞ lim ∥ f n ∥ = 0 holds as follows.
lim n → ∞ ∥ f n − 0 ∥ 2 = lim n → ∞ ∫ 0 1 ∣ f ( x ) − 0 ∣ 2 d x = lim n → ∞ ∫ 0 1 n d x = lim n → ∞ 1 n = 0
\lim \limits_{n \to \infty} \|f_{n}-0 \|^2 = \lim \limits_{n \to \infty} \int_{0}^1 |f(x)-0|^2 dx = \lim \limits_{n \to \infty} \int_{0}^{\frac{1}{n}}dx = \lim \limits_{n \to \infty} \dfrac{1}{n} = 0
n → ∞ lim ∥ f n − 0 ∥ 2 = n → ∞ lim ∫ 0 1 ∣ f ( x ) − 0 ∣ 2 d x = n → ∞ lim ∫ 0 n 1 d x = n → ∞ lim n 1 = 0
However, it is clear that for all n n n , since f n ( 0 ) = 1 f_{n}(0)=1 f n ( 0 ) = 1 , f n ( x ) f_{n}(x) f n ( x ) does not converge to 0 0 0 at x = 0 x=0 x = 0 .
Pointwise convergence does not imply norm convergence Consider the interval [ 0 , 1 ] [0,1] [ 0 , 1 ] where g n g_{n} g n is as follows.
g n ( x ) = { n 0 < x < 1 n 0 e l s e w h e r e
g_{n}(x) = \begin{cases} n & 0<x<\dfrac{1}{n}
\\ 0 & \mathrm{elsewhere} \end{cases}
g n ( x ) = ⎩ ⎨ ⎧ n 0 0 < x < n 1 elsewhere
Then, since for all n n n , g n ( 0 ) = 0 g_{n}(0)=0 g n ( 0 ) = 0 holds, lim n → ∞ g n ( x ) = 0 \lim \limits_{n \to \infty} g_{n}(x) = 0 n → ∞ lim g n ( x ) = 0 follows. However, lim n → ∞ ∥ g n ∥ = 0 \lim \limits_{n \to \infty} \| g_{n} \| =0 n → ∞ lim ∥ g n ∥ = 0 does not hold.
lim n → ∞ ∥ g n − 0 ∥ 2 = lim n → ∞ ∫ 0 1 ∣ g n ( x ) − 0 ∣ 2 d x = lim n → ∞ ∫ 0 1 n n 2 d x = lim n → ∞ n = ∞ ≠ 0
\lim \limits_{n \to \infty} \| g_{n}-0 \|^2 = \lim \limits_{n \to \infty} \int_{0}^1 |g_{n}(x)-0|^2dx = \lim \limits_{n \to \infty} \int_{0}^{ \frac{1}{n} } n^2dx = \lim \limits_{n \to \infty} n = \infty \ne 0
n → ∞ lim ∥ g n − 0 ∥ 2 = n → ∞ lim ∫ 0 1 ∣ g n ( x ) − 0 ∣ 2 d x = n → ∞ lim ∫ 0 n 1 n 2 d x = n → ∞ lim n = ∞ = 0
Theorem Suppose on the interval [ a , b ] [a,b] [ a , b ] that f n ( x ) f_{n}(x) f n ( x ) uniformly converges to f ( x ) f(x) f ( x ) . Then, f n f_{n} f n norm converges to f f f .
Proof According to the conditions for uniform convergence , for all x ∈ [ a , b ] x \in [a,b] x ∈ [ a , b ] , there exists ∣ f n ( x ) − f ( x ) ∣ ≤ M n |f_{n}(x)-f(x)| \le M_{n} ∣ f n ( x ) − f ( x ) ∣ ≤ M n such that lim n → ∞ M n = 0 \lim \limits_{n \to \infty} M_{n} = 0 n → ∞ lim M n = 0 is satisfied. Therefore, the following holds.
∥ f n − f ∥ 2 = ∫ a b ∣ f n ( x ) − f ( x ) ∣ 2 d x ≤ ∫ a b M n 2 d x = ( b − a ) M n 2
\|f_{n}-f \|^2 = \int_{a}^b|f_{n}(x)-f(x)|^2dx \le \int_{a}^b {M_{n}}^2dx=(b-a){M_{n}}^2
∥ f n − f ∥ 2 = ∫ a b ∣ f n ( x ) − f ( x ) ∣ 2 d x ≤ ∫ a b M n 2 d x = ( b − a ) M n 2
Therefore, f n f_{n} f n norm converges to f f f .
lim n → ∞ ∥ f n − f ∥ 2 ≤ lim n → ∞ ( b − a ) M n 2 = 0
\lim \limits_{n \to \infty} \|f_{n}-f \|^2 \le \lim \limits_{n \to \infty} (b-a){M_{n}}^2 = 0
n → ∞ lim ∥ f n − f ∥ 2 ≤ n → ∞ lim ( b − a ) M n 2 = 0
■