logo

Smoothing Effect of Harmonic Functions 📂Partial Differential Equations

Smoothing Effect of Harmonic Functions

Theorem

Mean Value Property

u(x)= ⁣ ⁣ ⁣ ⁣ ⁣ ⁣B(x,r)udS= ⁣ ⁣ ⁣ ⁣ ⁣ ⁣B(x,r)udy \begin{align*} u(x) = -\!\!\!\!\!\! \int_{\partial B(x,r)} udS = -\!\!\!\!\!\! \int _{B(x,r)} udy \end{align*}

Assuming uC(Ω)u \in C(\Omega) satisfies the mean value property in each open ball B(x,r)ΩB(x,r)\subset \Omega, then the following holds.

uC(Ω) u \in C^{\infty}(\Omega)

Description

If it’s Harmonic, it means it’s smooth inside. It is important to note that smoothness or continuity is not guaranteed at the boundary Ω\partial \Omega.

Proof

Assuming ϵ>0\epsilon>0 is given. The ϵ\epsilon-Mollification of uu is as follows.

uϵ=ηϵuC(Ω>ϵ) u^\epsilon=\eta_\epsilon *u \in C^\infty(\Omega_{>\epsilon})

At this time, Ω>ϵ:={xΩ:dist(x,Ω)>ϵ}\Omega_{>\epsilon} := \left\{ x \in \Omega : \mathrm{dist}(x, \partial \Omega) > \epsilon \right\} applies. Let’s say xΩ>ϵx \in \Omega_{>\epsilon}. Then, the following holds.

uϵ(x)=Ωηϵ(xy)u(y)dy=1ϵnΩη(xyϵ)u(y)dy=1ϵnB(x,ϵ)η(xyϵ)u(y)dy \begin{align*} u^\epsilon (x) &= \int_\Omega \eta_\epsilon (x-y)u(y)dy \\ &= \dfrac{1}{\epsilon^n}\int_{\Omega} \eta \left( \frac{x-y}{\epsilon} \right) u(y)dy \\ &= \dfrac{1}{\epsilon^n}\int_{B(x,\epsilon)}\eta \left( \frac{|x-y|}{\epsilon} \right) u(y) dy \end{align*} The third equality holds because, by definition of the Mollifier η\eta, the value outside the ball is 00. Separating the surface integral and the integral over the radius yields the following.

1ϵn0ϵη(rϵ)(B(x,r)udS)dr \dfrac{1}{\epsilon^n} \int_{0}^\epsilon \eta \left( \frac{r}{\epsilon} \right) \left( \int _{\partial B(x,r)} udS \right) dr

Using the mean value property leads to the following.

1ϵn0ϵη(rϵ)(B(x,r)udS)dr=1ϵn0ϵη(rϵ)(nα(n)rn1nα(n)rn1B(x,r)udS)dr=1ϵn0ϵη(rϵ)nα(n)rn1 ⁣ ⁣ ⁣ ⁣ ⁣ ⁣B(x,r)u(y)dS(y)dr=1ϵn0ϵη(rϵ)nα(n)rn1u(x)dr=1ϵnu(x)0ϵη(rϵ)nα(n)rn1dr \begin{align*} &\quad \dfrac{1}{\epsilon^n} \int_{0}^\epsilon \eta \left( \frac{r}{\epsilon} \right) \left( \int _{\partial B(x,r)} udS \right) dr \\ &= \dfrac{1}{\epsilon^n} \int_{0}^\epsilon \eta \left( \frac{r}{\epsilon} \right) \left( \dfrac{n\alpha (n)r^{n-1}}{n\alpha (n)r^{n-1}}\int _{\partial B(x,r)}u dS \right) dr \\ &= \dfrac{1}{\epsilon^n} \int_{0}^\epsilon \eta \left( \frac{r}{\epsilon} \right) n\alpha (n)r^{n-1} -\!\!\!\!\!\! \int _{\partial B(x,r)}u(y) dS(y)dr \\ &= \dfrac{1}{\epsilon^n} \int_{0}^\epsilon \eta \left( \frac{r}{\epsilon} \right) n\alpha (n)r^{n-1} u(x) dr \\ &= \dfrac{1}{\epsilon^n}u(x) \int_{0}^\epsilon \eta \left( \frac{r}{\epsilon} \right) n\alpha (n)r^{n-1}dr \end{align*}

Here, nα(n)rn1n\alpha (n)r^{n-1} is the surface area of the ball with radius rr, so the above integral can be rewritten as follows.

1ϵnu(x)B(0,ϵ)η(rϵ)dr=u(x)B(0,ϵ)ηϵ(y)dy=u(x) \dfrac{1}{\epsilon^n}u(x) \int_{B(0,\epsilon)}\eta \left( \frac{r}{\epsilon} \right) dr=u(x) \int_{B(0,\epsilon)} \eta_\epsilon (y)dy=u(x)

The last equality holds because, by the definition of ηϵ\eta_\epsilon, the integral within the ball B(r,ϵ)B(r,\epsilon) is 11. Therefore, for all ϵ\epsilon, u=uϵ in Ω>ϵu=u^\epsilon \ \mathrm{in}\ \Omega_{>\epsilon} and uϵC(Ω)u^\epsilon \in C^\infty(\Omega), thus uC(Ω)u \in C^\infty (\Omega)