logo

Multi Index Notation 📂Partial Differential Equations

Multi Index Notation

Definition[^1]

A multi-index with order α|\alpha| is a tuple α=(α1,α2,,αn)\alpha=(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}) whose components are non-negative integers. Here, α| \alpha| is defined as follows.

α=inαi=α1++αn |\alpha| = \sum _{i}^{n} \alpha_{i} = \alpha_{1} + \cdots + \alpha_{n}

Notation

For x=(x1,x2,,xn)Rnx = (x_{1}, x_{2}, \dots, x_{n}) \in \mathbb{R}^{n}, xαx^{\alpha} is defined as follows.

xα:=x1α1x2α2xnαn x^{\alpha} := x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}

The multi-index is often used to represent partial derivatives as follows.

Dα:= αx1α1xnαn= (x1)α1(x2)α2(xn)αn= x1α1xnαn \begin{align*} D^\alpha :=&\ \dfrac{\partial ^{|\alpha|} } {{\partial x_{1}}^{\alpha_{1}}\cdots {\partial x_{n}}^{\alpha_{n}}} \\ =&\ \left( \frac{ \partial }{ \partial x_{1}} \right)^{\alpha_{1}}\left( \frac{ \partial }{ \partial x_{2}} \right)^{\alpha_{2}}\cdots \left( \frac{ \partial }{ \partial x_{n}} \right)^{\alpha_{n}} \\ =&\ \partial^{\alpha_{1}}_{x_{1}}\cdots\partial^{\alpha_{n}}_{x_{n}} \end{align*}

For example, if α=(2,1,0)\alpha=(2,1,0), then Dαu(x)D^{\alpha} u(x) means the following.

Dαu(x)=3u(x)x1x1x2=3u(x)x12x2 D^{\alpha} u(x)=\dfrac{ \partial^3 u(x)} {\partial x_{1} \partial x_{1} \partial x_{2}}=\dfrac{ \partial^3 u(x)} {\partial x_{1} ^{2} \partial x_{2}}

Also, for an integer k0k \ge 0, DkD^k is defined as follows.

Dku:={Dαu:α=k} D^ku:=\left\{ D^{\alpha} u : |\alpha|=k \right\}

DkuD^{k}u is a set that collects all DαuD^{\alpha} u for every multi-index α\alpha with order kk. Note that kk is a non-negative integer, not a multi-index. Once an order is assigned to the elements of DkuD^{k}u, meaning determined which component is which, DkuD^k u can be thought of as a point in Rk\mathbb{R}^{k}[^2]. See the following example.

  • Case 1. k=1k=1

    It means the gradient.

    D1u=Du:=(ux1, ux2, , uxn)=u  Rn D^1 u=Du:=(u_{x_{1}},\ u_{x_{2}},\ \cdots,\ u_{x_{n}})=\nabla u \ \in \ \mathbb{R^n}

  • Case 2. k=2k=2

    It means the Hessian matrix.

    D2u:=(ux1x1ux1xnuxnx1uxnxn) R2 D^2u := \begin{pmatrix} u_{x_{1}x_{1}} & \cdots & u{x_{1}x_{n}} \\ \vdots & \ddots & \cdots \\ u_{x_{n}x_{1}} & \cdots & u_{x_{n}x_{n}} \end{pmatrix} \in \ \mathbb{R^2}

    Especially, in the case of the Laplacian uu, it is the same as summing all the diagonal components of the Hessian matrix of uu.

    Δu=2=u=divDu=i=1nuxixi=tr(D2u) \Delta u=\nabla^2=\nabla \cdot \nabla u=\mathrm{div} Du = \sum_{i=1}^nu_{x_{i}x_{i}} = \mathrm{tr} (D^2u)