logo

Uniqueness of the Solution to the Dirichlet Problem for the Poisson Equation 📂Partial Differential Equations

Uniqueness of the Solution to the Dirichlet Problem for the Poisson Equation

Theorem1

Let’s assume that ΩRn\Omega \subset \mathbb{R}^n is open and bounded. And let gC(Ω)g \in C(\partial \Omega), fC(Ω)f \in C(\Omega). Then in the Dirichlet problem of the Poisson equation as below, the solution uC2(Ω)C(Ωˉ)u \in C^2(\Omega) \cap C(\bar{\Omega}), if exists, is unique (=at most one exists).

{Δu=fin Ωu=gon Ω \begin{equation} \left\{ \begin{aligned} -\Delta u &= f && \text{in } \Omega \\ u &= g && \text{on }\partial \Omega \end{aligned} \right. \label{eq1} \end{equation}

Proof

Suppose two functions u, u~C2(Ω)C(Ωˉ)u,\ \tilde{u} \in C^2(\Omega) \cap C(\bar{\Omega}) satisfy (eq1)\eqref{eq1}. And define function w:=uu~w :=u-\tilde{u}. Then because of Ω\Omega, Δw=ΔuΔu~=ff=0\Delta w=\Delta u- \Delta \tilde{u}=f-f=0 implies that ww is harmonic in Ω\Omega.

Maximum Principle for Harmonic Functions

For a harmonic function uu, the following holds:

maxΩˉu=maxΩu(orminΩˉu=minΩu) \max \limits_{\bar{\Omega}} u = \max \limits_{\partial \Omega} u \quad \left( \mathrm{or} \quad \min \limits_{\bar{\Omega}} u= \min \limits_{\partial \Omega} u \right)

Thus, by the Maximum Principle, the following holds.

maxΩˉw=maxΩw \max \limits_{\bar{\Omega}} w = \max \limits_{\partial \Omega} w

But given the boundary conditions, w=gg=0 in Ωw=g-g=0 \text{ in } \partial \Omega, hence we get:

maxΩˉw=maxΩw=0 \max \limits_{\bar{\Omega}} w = \max \limits_{\partial \Omega} w=0

By the same logic, we also obtain:

minΩˉw=minΩw=0 \min \limits_{\bar{\Omega}} w = \min \limits_{\partial \Omega} w =0

Therefore, because in Ωˉ\bar{\Omega}, w=uu~=0w=u-\tilde{u}=0,

u=u~ in Ωˉ u=\tilde{u} \text{ in } \bar{\Omega}


  1. Lawrence C. Evans, Partial Differential Equations (2nd Edition, 2010), p41-42 ↩︎