logo

Maxwell's Stress Tensor 📂Electrodynamics

Maxwell's Stress Tensor

Definition1

The tensor T\mathbf{T} below is called the Maxwell stress tensor.

T=T=(TxxTxyTxzTyxTyyTyzTzxTzyTzz) \mathbf{T}=\overleftrightarrow{\mathbf{T}}=\begin{pmatrix} T_{xx} & T_{xy} & T_{xz} \\ T_{yx} & T_{yy} & T_{yz} \\ T_{zx} & T_{zy} & T_{zz} \end{pmatrix}

Tij=ϵ0(EiEj12δijE2)+1μ0(BiBj12δijB2) T_{ij}=\epsilon_{0} \left( E_{i}E_{j}-\dfrac{1}{2}\delta_{ij}E^2 \right) + \dfrac{1}{\mu_{0}}\left(B_{i}B_{j}-\dfrac{1}{2}\delta_{ij}B^2 \right)

Here, δij\delta_{ij} is the Kronecker delta.

Description

22th order tensor is defined as above. It appears in the process of deriving the force experienced by a charge in a volume V\mathcal{V}. Being a 22th order tensor, it has 9 components. For vectors with one lower index, they can be represented as A\vec{A}, similarly, 22th order tensors with two lower indices can be represented as A\overleftrightarrow{\mathbf{A}}. However, the author considers this representation to be untidy and thus will represent vectors in the same manner, simply in boldface throughout this article.

The inclusion of the Kronecker delta in the formula makes the expressions for i=ji=j and iji \ne j quite different.

In the case of i=ji=j

Txx=ϵ0(Ex212E2)+1μ0(Bx212B2) T_{xx}=\epsilon_{0} \left( {E_{x}}^2-\dfrac{1}{2}E^2\right) +\dfrac{1}{\mu_{0}}\left( {B_{x}}^2-\dfrac{1}{2}B^2 \right)

since E2=Ex2+Ey2+Ez2E^2={E_{x}}^2+{E_{y}}^2+{E_{z}}^2

Txx=ϵ02(Ex2Ey2Ez2)+12μ0(Bx2By2Bz2) T_{xx}=\dfrac{\epsilon_{0}}{2} \left( {E_{x}}^2-{E_{y}}^2-{E_{z}}^2\right) +\dfrac{1}{2\mu_{0}}\left( {B_{x}}^2-{B_{y}}^2 -{B_{z}}^2\right)

In the case of iji \ne j

Txy=ϵ0(ExEy)+1μ0(BxBy) T_{xy}=\epsilon_{0}(E_{x}E_{y})+\dfrac{1}{\mu_{0}}(B_{x}B_{y})

Inner Product

The inner product of the Maxwell stress tensor T\mathbf{T} with any vector a\mathbf{a}, since it has components with only one lower index, is a vector (11th order tensor) and is as follows.

aT=(axayaz)(TxxTxyTxzTyxTyyTyzTzxTzyTzz)=(axTxx+ayTyx+azTzx, axTxy+ayTyy+azTzy, axTxz+ayTyz+azTzz) \begin{align*} \mathbf{a} \cdot \mathbf{T} &=\begin{pmatrix} a_{x} & a_{y} & a_{z} \end{pmatrix}\begin{pmatrix} T_{xx} & T_{xy} & T_{xz} \\ T_{yx} & T_{yy} & T_{yz} \\ T_{zx} & T_{zy} & T_{zz} \end{pmatrix} \\ &= (a_{x}T_{xx}+a_{y}T_{yx}+a_{z}T_{zx},\ a_{x}T_{xy} + a_{y}T_{yy} + a_{z}T_{zy},\ a_{x}T_{xz} + a_{y}T_{yz} + a_{z}T_{zz}) \end{align*}

(aT)j=i=x,y,zaiTij \left( \mathbf{a} \cdot \mathbf{T} \right)_{j}=\sum \limits_{i=x,y,z}a_{i}T_{ij}

Divergence

The divergence of T\mathbf{T} is also a vector. The jj component of T\nabla \cdot \mathbf{T} is

(T)j= ϵ0[i(EiEj)12iδijE2]+1μ0[i(BiBj)12iδijB2]= ϵ0[iEiEj+EiiEj12jE2]+1μ0[iBiBj+BiiBj12jB2]= ϵ0[(E)Ej+(E)Ej12jE2]+1μ0[(B)Bj+(B)Bj12jB2] \begin{align*} & \left( \nabla \cdot \mathbf{T} \right)_{j} \\ =&\ \epsilon_{0} \left[ \nabla_{i}(E_{i}E_{j}) -\dfrac{1}{2}\nabla_{i}\delta_{ij}E^2 \right] + \dfrac{1}{\mu_{0}}\left[ \nabla_{i}(B_{i}B_{j})-\dfrac{1}{2}\nabla_{i}\delta_{ij}B^2 \right] \\ =&\ \epsilon_{0} \left[ \nabla_{i}E_{i}E_{j} +E_{i}\nabla_{i}E_{j} -\dfrac{1}{2}\nabla_{j}E^2 \right] + \dfrac{1}{\mu_{0}}\left[ \nabla_{i}B_{i}B_{j}+B_{i}\nabla_{i}B_{j}-\dfrac{1}{2}\nabla_{j}B^2 \right] \\ =&\ \epsilon_{0} \left[ (\nabla \cdot \mathbf{E})E_{j} +(\mathbf{E} \cdot \nabla) E_{j} -\dfrac{1}{2}\nabla_{j}E^2 \right] + \dfrac{1}{\mu_{0}}\left[ (\nabla \cdot \mathbf{B}) B_{j}+(\mathbf{B} \cdot \nabla) B_{j}-\dfrac{1}{2}\nabla_{j}B^2 \right] \end{align*}


  1. David J. Griffiths, 기초전자기학(Introduction to Electrodynamics, 김진승 역) (4th Edition1 2014), p388-390 ↩︎