logo

The Mean Value Theorem for Laplace's Equation 📂Partial Differential Equations

The Mean Value Theorem for Laplace's Equation

Theorem1

Let us assume that an open set ΩRn\Omega \subset \mathbb{R}^{n} is given. Also, let’s assume that uC2(Ω)u \in C^2(\Omega) satisfies the Laplace equation. Then, for each open ball B(x,r)ΩB(x,r)\subset \subset \Omega, the following holds.

u(x)=1nα(n)rn1B(x,r)udS=: ⁣ ⁣ ⁣ ⁣ ⁣ ⁣B(x,r)udS=1α(n)rnB(x,r)udy=: ⁣ ⁣ ⁣ ⁣ ⁣ ⁣B(x,r)udy \begin{align*} u(x) &= \dfrac{1}{n \alpha (n)r^{n-1}} \int _{\partial B(x,r)} udS =: -\!\!\!\!\!\! \int_{\partial B(x,r)} udS \\ &= \dfrac{1}{\alpha (n)r^n}\int_{B(x,r)}udy =: -\!\!\!\!\!\! \int _{B(x,r)} udy \end{align*}

  • It is denoted as VUV\subset \subset U when VVˉUV \subset \bar V \subset U and Vˉ\bar V are compact.
  • Vˉ\bar V is the closure of VV
  • B(x,r)={yRn  yx<r}B(x,r)=\left\{ y \in \mathbb{R}^n \ \big|\ |y-x|<r \right\}
  • B(x,r)={yRn  yx=r}\partial B(x,r)=\left\{ y \in \mathbb{R}^n \ \big|\ |y-x|=r \right\}= Boundary of B(x,r)B(x,r)
  •  ⁣ ⁣ ⁣ ⁣ ⁣B(x,r)udS=- \!\!\!\!\! \int _{\partial B(x,r)} udS = The average value of uu on the boundary of open ball B(x,r)B(x,r)
  •  ⁣ ⁣ ⁣ ⁣ ⁣B(x,r)udy=- \!\!\!\!\! \int _{B(x,r)} udy= The average value of uu in open ball B(x,r)B(x,r)

The converse also holds.

Let’s say uC2(Ω)u \in C^2(\Omega) satisfies the average value property as follows in each open ball B(x,r)ΩB(x,r) \subset \Omega.

u(x)= ⁣ ⁣ ⁣ ⁣ ⁣ ⁣B(x,r)udS u(x)=-\!\!\!\!\!\! \int_{\partial B(x,r)} u dS

Then, uu is harmonic.

Proof

  • Part 1.  ⁣ ⁣ ⁣ ⁣ ⁣B(x,r)u(y)dS(y)=u(x)\int \!\!\!\!\!-_{\partial B(x,r)}u(y)dS(y)=u(x)

    There is a fixed point xΩx \in \Omega. And let’s denote dxd_{x} as follows.

    dx=dist(x,Ω):=infyΩxy>0 d_{x} = \mathrm{dist}(x, \partial \Omega) := \inf \limits_{y \in \partial \Omega} |x-y| >0

    In other words, dxd_{x} denotes the shortest distance from a point xx inside Ω\Omega to the boundary of Ω\Omega. And let’s define φ(r)\varphi(r) as follows.

    φ(r):=1nα(n)rn1B(x,r)u(y)dS(y)for 0<r<dx= ⁣ ⁣ ⁣ ⁣ ⁣ ⁣B(x,r)u(y)S(y) \begin{align*} \varphi(r) &:= \dfrac{1}{n \alpha (n)r^{n-1}} \int_{\partial B(x,r)} u(y) dS(y) \quad \mathrm{for}\ 0< r <d_{x} \\ &= -\!\!\!\!\!\!\int_{\partial B(x,r)} u(y)S(y) \end{align*}

    Here, the objective is to show that φ(r)\varphi(r) is independent of rr, and its value is u(x)u(x). Therefore, first, it needs to be shown that dϕdr=0\dfrac{d \phi}{dr}=0. To obtain the desired result, let’s do a variable transformation to y=x+rzy=x+rz. Then yB(x,r)y \in \partial B(x,r), zB(0,1)z \in \partial B(0,1), and since dS(y)=rn1dS(z)dS(y)=r^{n-1}dS(z), the following holds.

    φ(r)=1nα(n)rn1B(x,r)u(y)dS(y)=1nα(n)rn1B(0,1)u(x+rz)rn1dS(z)=1nα(n)B(0,1)u(x+rz)dS(z) \begin{align} \varphi(r) &= \dfrac{1}{n \alpha (n) r^{n-1} } \int_{\partial B(x,r)} u(y)dS(y) \nonumber \\ &= \dfrac{1}{n \alpha (n) r^{n-1} } \int_{\partial B(0,1)} u(x+rz)r^{n-1}dS(z) \nonumber \\ &= \dfrac{1}{n \alpha (n) } \int_{\partial B(0,1)} u(x+rz)dS(z) \label{eq1} \end{align}

    If we say f(r)=g(x+rz)f(r)=g(x+rz), the total differential is as follows.

    df=g(x1+rz1)d(x1+rz1)++g(x1+rz1)d(x1+rz1) df=\dfrac{\partial g}{\partial (x_{1}+rz_{1})}d(x_{1}+rz_{1})+\cdots + \dfrac{\partial g}{\partial (x_{1}+rz_{1})}d(x_{1}+rz_{1})

    Then, dfdr\dfrac{d f}{d r} is as follows.

    f(r)=df(r)dr=g(x1+rz1)d(x1+rz1)dr++g(x1+rz1)d(x1+rz1)dr=g(x+rz)(x1+rz1)z1++g(x+rz)(x1+rz1)zn=(g(x+rz)(x1+rz1),,g(x+rz)(x1+rz1))(z1,,zn)=Dg(x+rz)z \begin{align*} f^{\prime}(r) &= \dfrac{df(r)}{dr} \\ &= \frac{\partial g}{\partial (x_{1}+rz_{1})}\dfrac{ d(x_{1}+rz_{1})}{dr}+\cdots + \frac{\partial g}{\partial (x_{1}+rz_{1})}\dfrac{ d(x_{1}+rz_{1}) }{dr} \\ &= \frac{\partial g(x+rz)}{\partial (x_{1}+rz_{1})}z_{1}+\cdots + \frac{\partial g(x+rz)}{\partial (x_{1}+rz_{1})}z_{n} \\ &= \left( \frac{\partial g(x+rz)}{\partial (x_{1}+rz_{1})}, \cdots , \frac{\partial g(x+rz)}{\partial (x_{1}+rz_{1})}\right) \cdot(z_{1},\cdots,z_{n}) \\ &= Dg(x+rz)\cdot z \end{align*}

    Applying this to (eq1)\eqref{eq1}, we obtain the following.

    φ(r)=1nα(n)B(0,1)Du(x+rz)zdS(z)=1nα(n)B(x,r)Du(y)yxr1rn1dS(y)=1nα(n)rn1B(x,r)Du(y)yxrdS(y)=1nα(n)rn1B(x,r)Du(y)νdS(y)=1nα(n)rn1B(x,r)u(y)νdS(y)=1nα(n)rn1B(x,r)Δudy=0 \begin{align*} \varphi^{\prime}(r) &= \dfrac{1}{n\alpha (n)} \int_{\partial B(0,1) } Du(x+rz)\cdot zdS(z) \\ &= \dfrac{1}{n\alpha (n)} \int_{\partial B(x,r)} Du(y) \cdot \dfrac{y-x}{r} \dfrac{1}{r^{n-1}}dS(y) \\ &= \dfrac{1}{n\alpha (n)r^{n-1}} \int_{\partial B(x,r)} Du(y)\cdot \dfrac{y-x}{r}dS(y) \\ &= \dfrac{1}{n\alpha (n)r^{n-1}} \int_{\partial B(x,r)} Du(y)\cdot \boldsymbol{\nu} dS(y) \\ &= \dfrac{1}{n\alpha (n)r^{n-1}} \int_{\partial B(x,r)} \dfrac{ \partial u(y)}{\partial \nu}dS(y) \\ &= \dfrac{1}{n \alpha (n) r^{n-1} } \int_{B(x,r)} \Delta u dy \\ &= 0 \end{align*}

    Here, ν\boldsymbol{\nu} is the outward unit normal vector. The fourth and fifth equalities hold by the definition of the outward unit normal vector. yxr\dfrac{y-x}{r} is outward from B(x,r)\partial B(x,r) and its magnitude is 11, so yxr=ν\dfrac{y-x}{r}=\boldsymbol{\nu}. The sixth equality holds by Green’s theorem(i). The last equality holds by the assumption that uu satisfies Δu=0\Delta u=0.

    Now, since φ(r)=0\varphi^{\prime}(r)=0, ϕ(r)\phi (r) is constant for rr, which is 0<r<dx0<r<d_{x}. Therefore, the following holds.

    $$ \begin{align*} -\!\!\!\!\!\! \int_{\partial B(x,r)} u(y)dS(y) &= \varphi(r) = \lim \limits_{t \rightarrow 0^+} \varphi (t) \\ &= \lim \limits_{t \rightarrow 0^+} \dfrac{1}{n\alpha (n) r^{n-1}}\int _{\partial B(x,t)} u(y)dS(y) \\ &= \lim \limits_{t \rightarrow 0^+} -\!\!\!\!\!\! \int_{\partial B(x,t)} u(y)dS(y)
    \\ &= u(x) \end{align*} $$

    If it is t0+t \rightarrow 0^+, the diameter of the ball gradually decreases, so its average value becomes u(x)u(x).

  • Part 2.  ⁣ ⁣ ⁣ ⁣ ⁣ ⁣B(x,r)udx=u(x)\int\!\!\!\!\!\!- _{B(x,r)} udx=u(x)

    Let’s assume x,dxx, d_{x} is the same as in Part 1. Then, the following holds for 0<r<dx0 < r < d_{x}.

    $$ \begin{align*} \int_{B(x,r)} u(y)dy &= \int_{0}^r \left( \int_{\partial B(x,s)} u(y)dS(y) \right) ds \\ &= \int_{0}^r n\alpha (n)s^{n-1}\left( \dfrac{1}{n\alpha (n)s^{n-1}}\int_{\partial B(x,s)} u(y)dS(y) \right) ds \\ &= \int_{0}^r n\alpha (n)s^{n-1}\left( -\!\!\!\!\!\! \int_{\partial B(x,s)} u(y)dS(y) \right) ds
    \\ &= \int_{0}^rn\alpha (n)s^{n-1}u(x) ds
    \\ &= n\alpha (n) u(x) \int_{0}^r s^{n-1} ds \\ &= n\alpha (n) u(x) \dfrac{r^n}{n} \\ &= \alpha (n)r^n u(x) \end{align*} $$

    Therefore, if we leave only uu on the right side and organize, it is as follows.

     ⁣ ⁣ ⁣ ⁣ ⁣ ⁣B(x,r)udy=1α(n)rnB(x,r)udy=u(x) -\!\!\!\!\!\! \int_{B(x,r)} udy = \dfrac{1}{\alpha (n) r^n} \int_{B(x,r)} udy = u(x)


  1. Lawrence C. Evans, Partial Differential Equations (2nd Edition, 2010), p25-26 ↩︎